Newswise What gets the leader of the NIH jazzed?
Speaking to a packed West Pavilion auditorium March 6, Francis Collins, M.D., Ph.D., director of the National Institutes of Health, shared his picks of 10 areas of particular excitement and promise in biomedical research. (Watch the full talk here.)
In nearly every area, UAB scientists are helping to lead the way as Collins himself noted in several cases. At the conclusion of his talk, Collins addedhis advice for young scientists. Here is Collins top 10 list, annotated with some of the UAB work ongoing in each area and ways that faculty, staff and students can get involved.
1. Single-cell sequencing
[see this section of the talk here]
I am so jazzed with what has become possible with the ability to study single cells and see what they are doing, Collins said. They have been out of our reach now we have reached in. Whether you are studying rheumatoid arthritis, diabetes or the brain, you have the chance to ask each cell what it is doing.
Single-cell sequencing and UAB:Collins noted that Robert Carter, M.D., the acting director of the National Institute of Arthritis and Musculoskeletal and Skin Diseases, was a longtime faculty member at UAB (serving as director of the Division of Clinical Immunology and Rheumatology). For the past several years, UAB researchers have been studying gene expression in subpopulations of immune cells inpatients with rheumatoid arthritis.
Join in:Researchers can take advantage of the single-cell sequencing core facility in UABsComprehensive Flow Cytometry Core, directed by John Mountz, M.D., Ph.D., Goodwin-Blackburn Research Chair in Immunology and professor in the Department of Medicine Division of Clinical Immunology and Rheumatology.
Learn more:Mountz and other heavy users of single-cell sequencing explain how the techniqueslet them travel back in time and morein this UAB Reporter story.
2. New ways to see the brain
[See this section of the talk here]
The NIHsBRAIN Initiativeis making this the era where we are going to figure out how the brain works all 86 billion neurons between your ears, Collins said. The linchpin of this advance will be the development of tools to identify new brain cell types and circuits that will improve diagnosis, treatment and prevention of autism, schizophrenia, Parkinsons and other neurological conditions, he said.
Brain tech and UAB:Collins highlighted thework of BRAIN Initiative granteeHarrison Walker, M.D., an associate professor in the Department of Neurology, whose lab has been developing a more sophisticated way to understand the benefits of deep brain stimulation for people with Parkinsons and maybe other conditions, Collins said.
Join in:UABs planned new doctoral program in neuroengineering would be the first of its kind in the country.
Learn more:Find out why neuroengineering is asmart career choicein this UAB Reporter story.
3. Induced pluripotent stem (iPS) cells
[See this section of the talk here]
Researchers can now take a blood cell or skin cell and, by adding four magic genes, Collins explained, induce the cells to become stem cells. These induced pluripotent stem (iPS) cells can then in turn be differentiated into any number of different cell types, including nerve cells, heart muscle cells or pancreatic beta cells. The NIH has invested in technology to put iPS-derived cells on specialized tissue chips. Youve got you on a chip, Collins explained. Some of us dream of a day where this might be the best way to figure out whether a drug intervention is going to work for you or youre going to be one of those people that has a bad consequence.
iPS cells at UAB:Collins displayed images of thecutting-edge cardiac tissue chipdeveloped by a UAB team led by Palaniappan Sethu, Ph.D., an associate professor in the Department of Biomedical Engineering and the Division of Cardiovascular Disease. The work allows the development of cardiomyocytes that can be used to study heart failure and other conditions, Collins said.
Join in:UABs biomedical engineering department, one of the leading recipients of NIH funding nationally, is a joint department of the School of Engineering and School of Medicine. Learn more about UABsundergraduate and graduate programs in biomedical engineering, and potential careers, here.
Learn more:See howthis novel bioprinterdeveloped by UAB biomedical researchers is speeding up tissue engineering in this story from UAB News.
4. Microbiome advances
[See this section of the talk here]
We have kind of ignored the fact that we have all these microbes living on us and in us until fairly recently, Collins said. But now it is clear that we are not an organism we are a superorganism formed with the trillions of microbes present in and on our bodies, he said. This microbiome plays a significant role not just in skin and intestinal diseases but much more broadly.
Microbiome at UAB:Collins explained that work led by Casey Morrow, Ph.D., and Casey Weaver, M.D., co-directors of theMicrobiome/Gnotobiotics Shared Facility, has revealed intriguing information abouthow antibiotics affect the gut microbiome. Their approach has potential implications for understanding, preserving and improving health, Collins said.
Join in:Several ongoing clinical trials at UAB are studying the microbiome, including a studymodifying diet to improve gut microbiotaand an investigation of the microbiomes ofpostmenopausal women looking for outcomes and response to estrogen therapy.
Learn more:This UAB News storyexplains the UAB researchthat Collins highlighted.
5. Influenza vaccines
[See this section of the talk here]
Another deadly influenza outbreak is likely in the future, Collins said. What we need is not an influenza vaccine that you have to redesign every year, but something that would actually block influenza viruses, he said. Is that even possible? It just might be.
Influenza research at UAB:Were probably at least a decade away from a universal influenza vaccine. But work ongoing at UAB in the NIH-fundedAntiviral Drug Discovery and Development Center(AD3C), led by Distinguished Professor Richard Whitley, M.D., is focused on such an influenza breakthrough.
Join in:For now, the most important thing you can do to stop the flu is to get a flu vaccination. Employees can schedule afree flu vaccination here.
Learn more:Why get the flu shot? What is it like? How can you disinfect your home after the flu? Get all the information atthis comprehensive sitefrom UAB News.
6. Addiction prevention and treatment of pain
[See this section of the talk here]
The NIH has a role to play in tackling the crisis of opioid addiction and deaths, Collins said. The NIHs Helping to End Addiction Long-term (HEAL) initiative is an all-hands-on-deck effort, he said, involving almost every NIH institute and center, with the goal of uncovering new targets for preventing addiction and improving pain treatment by developing non-addictive pain medicines.
Addiction prevention at UAB:A big part of this initiative involves education to help professionals and the public understand what to do, Collins said. The NIH Centers of Excellence in Pain Education (CoEPE), including one at UAB, are hubs for the development, evaluation and distribution of pain-management curriculum resources to enhance pain education for health care professionals.
Join in:Find out how to tell if you or a loved one has a substance or alcohol use problem, connect with classes and resources or schedule an individualized assessment and treatment through theUAB Medicine Addiction Recovery Program.
Learn more:Discover some of the many ways that UAB faculty and staff aremaking an impact on the opioid crisisin this story from UAB News.
7. Cancer Immunotherapy
[See this section of the talk here]
We are all pretty darn jazzed about whats happened in the past few years in terms of developing a new modality for treating cancer we had surgery, we had radiation, we had chemotherapy, but now weve got immunotherapy, Collins said.
Educating immune system cells to go after cancer in therapies such as CAR-T cell therapy is the hottest science in cancer, he said. I would argue this is a really exciting moment where the oncologists and the immunologists together are doing amazing things.
Immunotherapy at UAB:I had to say something about immunology since Im at UAB given that Max Cooper, whojust got the Lasker Awardfor [his] B and T cell discoveries, was here, Collins said. This is a place I would hope where lots of interesting ideas are going to continue to emerge.
Join in:The ONeal Comprehensive Cancer Center at UAB is participating in a number of clinical trials of immunotherapies.Search the latest trials at the Cancer Centerhere.
Learn more:Luciano Costa, M.D., Ph.D., medical director of clinical trials at the ONeal Cancer Center, discusses the promise ofCAR-T cell therapy in this UAB MedCast podcast.
Assistant Professor Ben Larimer, Ph.D., is pursuing a new kind of PET imaging test that could give clinicians afast, accurate picture of whether immunotherapy is workingfor a patient in this UAB Reporter article.
8. Tapping the potential of precision medicine
[See this section of the talk here]
The All of Us Research Program from NIH aims to enroll a million Americans to move away from the one-size-fits-all approach to medicine and really understand individual differences, Collins said. The program, which launched in 2018 and is already one-third of the way to its enrollment goal, has a prevention rather than a disease treatment approach; it is collecting information on environmental exposures, health practices, diet, exercise and more, in addition to genetics, from those participants.
All of Us at UAB:UAB has been doing a fantastic job of enrolling participants, Collins noted. In fact, the Southern Network of the All of Us Research Program, led by UAB, has consistently been at the top in terms of nationwide enrollment, as School of Medicine Dean Selwyn Vickers, M.D., noted in introducing Collins.
Join in:Sign up forAll of Usat UAB today.
Learn more:UABs success in enrolling participants has led to anew pilot study aimed at increasing participant retention rates.
9. Rare diseases
[See this section of the talk here]
Rare Disease Day, on Feb. 29, brought together hundreds of rare disease research advocates at the NIH, Collins said. NIH needs to play a special role because many diseases are so rare that pharmaceutical companies will not focus on them, he said. We need to find answers that are scalable, so you dont have to come up with a strategy for all 6,500 rare diseases.
Rare diseases at UAB: The Undiagnosed Diseases Network, which includes aUAB siteled by Chief Genomics Officer Bruce Korf, M.D., Ph.D., is a national network that brings together experts in a wide range of conditions to help patients, Collins said.
Participants in theAlabama Genomic Health Initiative, also led by Korf, donate a small blood sample that is tested for the presence of specific genetic variants. Individuals with indications of genetic disease receive whole-genome sequencing. Collins noted that lessons from the AGHI helped guide development of the All of Us Research Program.
Collins also credited UABs Tim Townes, Ph.D., professor emeritus in the Department of Biochemistry and Molecular Genetics, for developing the most significantly accurate model of sickle cell disease in a mouse which has been a great service to the [research] community. UAB is now participating in anexciting clinical trial of a gene-editing technique to treat sickle cellalong with other new targeted therapies for the devastating blood disease.
Join in:In addition to UABs Undiagnosed Diseases Program (which requires a physician referral) and the AGHI, patients and providers can contact theUAB Precision Medicine Institute, led by Director Matt Might, Ph.D. The institute develops precisely targeted treatments based on a patients unique genetic makeup.
Learn more:Discover how UAB experts solved medical puzzles for patients by uncovering anever-before-described mutationandcracking a vomiting mysteryin these UAB News stories.
10. Diversity in the scientific workforce
[See this section of the talk here]
We know that science, like everything else, is more productive when teams are diverse than if they are all looking the same, Collins said. My number one priority as NIH director is to be sure we are doing everything we can to nurture and encourage the best and brightest to join this effort.
Research diversity at UAB:TheNeuroscience Roadmap Scholars Programat UAB, supported by an NIH R25 grant, is designed to enhance engagement and retention of under-represented graduate trainees in the neuroscience workforce. This is one of several UAB initiatives to increased under-represented groups and celebrate diversity. These include several programs from theMinority Health and Health Disparities Research Centerthat support minority students from the undergraduate level to postdocs; thePartnership Research Summer Training Program, which provides undergraduates and especially minority students with the opportunity to work in UAB cancer research labs; theDeans Excellence Award in Diversityin the School of Medicine; and the newly announcedUnderrepresented in Medicine Senior Scholarship Programfor fourth-year medical students.
Join in:The Roadmap program engages career coaches and peer-to-peer mentors to support scholars. To volunteer your expertise, contact Madison Bamman atmdbamman@uab.eduorvisit the program site.
Learn more:Farah Lubin, Ph.D., associate professor in the Department of Neurobiology and co-director of the Roadmap Scholars Program,shares the words and deeds that can save science careersin this Reporter story. In another story, Upender Manne, Ph.D., professor in the Department of Pathology and a senior scientist in the ONeal Comprehensive Cancer Center, explains how students in the Partnership Research Summer Training Program gethooked on cancer research.
Originally posted here:
Looking to the future with Dr. Francis Collins - Newswise