header image

Page 21«..10..20212223..3040..»

The people cloning their pets – BBC.com

"People ask me, 'Why is it so expensive?' and I tell them because there are so many complicated steps involved in the whole process," says Rodriguez. "It's definitely an emotional reason for pet clients. They want to be able to carry on that strong emotional bond that they have with the pet."

The industry has since expanded elsewhere in the globe. Sooam Biotech in South Korea offer dog cloning services, as well as Sinogene in China.

However, many scientists remain uncomfortable about the whole premise. Lovell-Badge argues that there is "no justification" for pet cloning as while the resulting animals will be genetically identical, they will not have the same behavioural characteristics and personalities as all creatures are a product of both genes and their environment.

"People really want their pet that knows them and knows certain tricks and so forth," says George Church, professor of genetics at Harvard Medical School. "In that sense, it's a little bit taking advantage of people's grief."

Reviving extinct species

In the years that followed Dolly's cloning, the central question was whether scientists would ever extend the technology to humans, and the many moral and ethical issues that would invoke.

But while a human embryo was successfully cloned in 2013, the process of creating an entire human being has never been attempted because of the likely public outcry. Chinese scientists did clone the first primates in January 2018, long-tailed macques Zhong Zhong and Hua Hua, but there are currently no suggestions that this work will continue into further primate species.

Instead, most funding is being devoted to using cloning to resurrect animals on the verge of extinction. Efforts are underway to clone both the giant panda and the northern white rhino a species for which there are just two animals left on the planet while in the last two years, ViaGen have cloned the black footed ferret and Przewalski's horse, both of which are endangered.

Church is leading the most ambitious project, a quest to revive the woolly mammoth, a species that last lived some 4,000 years ago. His de-extinction company Colossal has already raised 11m ($14.5m) in funding to support the idea, which will involve creating an elephant-mammoth hybrid through taking skin cells from Asian elephants and using cloning technology to reprogram them with mammoth DNA.

Read the rest here:
The people cloning their pets - BBC.com

Therapeutic feline and canine cancer vaccine – Open Access Government

Canine cancer bear substantial similarities with their human counterparts[1-4]. Treatment of pets that get solid tumours will typically consist of surgery, chemotherapy and sporadically radiation, or a combination of these. Unfortunately, these treatments are not always effective.

In humans, experimental cancer treatments have had a slow but sure advance into the clinics and have given many patients new hope. Especially, treatment methods related to immunotherapy have been on the rise for the past decade.

Despite the documented clinical success of human immunotherapy, the opportunities to apply these treatments on companion dogs in clinical settings are few or non-existent in Nordic countries. As the number of insured pets in these countries increases so does the prospect that experimental treatments will also be affordable for pet owners.

Recent research on pet cancers shows that cancer immunotherapy can have life-prolonging effects and is often associated with fewer side effects (for the overview of literature see the provided reviews and the references therein)[4,5]. We are therefore developing new therapies for companion dogs (and cats) that will combine our expertise in human immunotherapy and translational research with the newfound knowledge of canine cancer at the molecular level.

Alvacan (Figure) is our product line of therapeutic cancer vaccines that combines the best of classical cellular immunotherapy with recombinant DNA/RNA technology.

The treatments that we are developing are tailored for each individual patient and will serve as a supplement to standard cancer surgery and chemotherapy. We are currently testing two immunotherapy treatments that can be administered at the local veterinary clinic.

What we need is a patients blood and if possible, a cancer tissue sample that is typically obtained through surgery (Figure).The administration of vaccines and patient follow up will continue in the selected partner clinics. These vaccines will be affordable for the typical pet owner in Nordic countries.

As a part of our vaccine research, we have created a biobank of living tissues and cell lines from canine and feline solid tumours. This collection serves as a base for our research and can be available for other researchers through collaboration with us or commercialisation of our material. We have already successfully adapted our previously described human methods to work with canine and feline biobanking and cell cultures [6-10].

For each primary cancer cell line, isolated from patient biopsies, we will attempt to establish a cell line that is enriched for cancer stem cells (CSCs). CSCs are believed to be cellular drivers of carcinogenesis. One of the hallmarks of CSCs is self-renewal. We have previously extensively studied stemness and growth properties in a series of primary CSC lines [10]. Our biobank comprises currently 180 samples of 80 canine and feline patients and these numbers are growing day by day.

By the end of this year, we expect to have doubled the number of patient samples. Our collection of living tissues and cell lines includes intracranial, mammary, and testicular solid tumours, sarcomas and many other less prevalent cancers.

We will also map molecular profiles of canine tumours using the previously established techniques tested in human cancer [10]. Once such information is available, we can develop more advanced targeted treatments. By comparing molecular profiles from many cancer patients, we can form a more general picture of the disease and develop treatments with a broader effect.

The need for animal models that translate to human immunity is a primary challenge of human cancer immunotherapy[11]. A better understanding of canine carcinogenesis is therefore one of the main goals of our research. This project has excellent translational potential and will not only be beneficial for cancer-suffering pets, but also humans.

We are also studying gene expression regulation in canine cancer. Targeted proteomics and gene expression analysis is conducted according to methods that we previously established in humans[10]. There are currently only a few bioinformatic tools that apply to canine genomes, transcriptomes and proteomes. The number of public canine molecular profiles is also far behind that for human and murine counterparts.

Our goal is to generate molecular data profiles and design bioinformatic tools that will speed up this type of research and contribute to the information exchange between research organisations and communities. We intend to generate many canine molecular cancer profiles and create new tools for data analysis. Based on a better understanding of molecular drivers of canine carcinogenesis we are also planning on building next-generation diagnostic tools for canine cancer. We are going to combine molecular profiles with clinical and imaging data to design machine learning and AI tools that will enable better diagnostics and improve medication efficiency.

Literature list

About the author

Biljana Stangeland. PhD is an Executive Director, Chief Scientific Officer, and co-founder of Alv B AS (https://alvb.no/), a Norwegian biotech start-up. Biljana has more than 25 years of academic research behind her and over five years as a Lead Data Scientist in the private sector.

Please note: This is a commercial profile

2019. This work is licensed under CC-BY-NC-ND.

Editor's Recommended Articles

Link:
Therapeutic feline and canine cancer vaccine - Open Access Government

Chemotherapy for Non-Hodgkin’s Lymphoma: What to Know – Healthline

Non-Hodgkins lymphoma (NHL) is a type of cancer that affects white blood cells, known as lymphocytes. In NHL, cancer cells tend to spread to parts of the lymphatic system throughout the body, like the lymph nodes.

An estimated 4 percent of people in the United States who receive a cancer diagnosis have NHL. If a doctor diagnoses NHL in you or a loved one, they will likely recommend chemotherapy for treatment. Chemotherapy is the use of medications to treat rapidly dividing cells, such as cancer cells.

Choosing a chemotherapy regimen depends on several factors:

Most people will receive a combination of chemotherapy drugs to treat NHL. There are many different types of NHL and many different drugs and combinations that doctors use to treat specific types. Well review some of the common drugs and how they work.

Many types of chemotherapy drugs are available to treat NHL. Each works slightly differently to target and ideally kill cancerous cells or keep them from multiplying.

But chemotherapy can affect healthy cells, too, causing side effects. Certain groups of chemotherapy drugs may have unique side effects. These are things a doctor will consider before coming up with an appropriate regimen.

Chemotherapy drugs used to treat NHL usually fall into one of the following groups:

Alkylating agents work by damaging the genetic material (DNA) that tells a cancerous cell to replicate.

Examples of alkylating agents doctors prescribe to treat NHL include:

While all chemotherapy drugs have side effects, alkylating agents may come with an increased risk of bone marrow damage. Research has also linked some alkylating agents to pulmonary fibrosis.

Platinum drugs are a form of alkylating agent. When inside the body, they form platinum complexes that keep cancer cells from replicating.

Examples of platinum drugs include:

Platinum drugs have some unique side effects.

Up to 40 specific side effects are known to occur with platinum drugs, but some are unique. Some platinum drugs, particularly oxaliplatin, have been observed to cause nerve damage.

Antimetabolites are medications that interfere with the typical parts of a cancerous cells genetic material. They scramble the code that helps DNA copy itself, so the cancerous cells cannot multiply.

Examples of antimetabolites used to treat NHL include:

One of the main side effects of antimetabolites is a low white blood cell count (leukopenia).

Purine analogs are an antimetabolite drug category. They have a similar structure to purines, which can be a building block of certain genetic material.

Examples of purine analogs used to treat NHL include:

Anthracyclines are antitumor antibiotics. These are not the same as the antibiotics we use to treat infections. These drugs bind to DNA to keep it from copying itself.

The types of anthracyclines doctors prescribe to treat NHL include:

Anthracyclines can cause heart damage in higher doses.

Doctors may prescribe other medications to treat NHL that may not fall into a specific category. Examples of these medications include:

If your doctor prescribes these or other medications, you can ask how they work to help treat your cancer type and what combinations may be most effective.

Doctors usually treat NHL with a combination of chemotherapy drugs. One such option for treating some of the most common types of NHL is R-CHOP. R-CHOP is an acronym for five drugs:

Corticosteroids are not a chemotherapy drug, but they may be part of your treatment. For NHL, doctors prescribe them to reduce inflammation and boost the effectiveness of your chemotherapy drugs.

Examples of corticosteroids used to treat NHL include:

Doctors often prescribe chemotherapy drugs for NHL in cycles. This means a person may take a medication for a short time, followed by a rest period.

Most chemotherapy drugs are taken either by mouth or by an intravenous (IV) line.

Typically, a doctor may prescribe several doses of chemotherapy drugs to be given over several weeks. After this time, you may undergo imaging tests, such as a PET scan or CT scan, to see if the drugs are working well.

If the initial chemotherapy treatment was ineffective or not fully effective, a doctor might recommend another chemotherapy regimen or different therapies.

If lymphomas have developed in the spinal area, doctors may give some chemotherapy drugs by intrathecal chemotherapy. This is when they insert a small, thin needle through the spinal column to get the medication directly to the spinal fluid.

Doctors may also use intrathecal chemotherapy to prevent lymphomas from developing in the spinal area.

The side effects of chemotherapy for NHL depend on what chemotherapy type a doctor prescribes. Its important to understand the side effects of the specific chemotherapy drugs you may be taking.

Some side effects that may commonly occur related to chemotherapy drugs include:

Some chemotherapy drugs are known to have specific effects. Examples of these known side effects include damage to the:

A doctor will consider the impact of these side effects when deciding on dosage.

Sometimes, NHL will not respond to chemotherapy. When this is the case, a doctor may recommend alternative treatments. These will depend on exactly what NHL type you have and how advanced your cancer is.

Treatment examples include:

Researchers are also studying new treatment types regularly to determine if there are other, more effective methods to treat NHL.

Advancements in chemotherapy drugs and how doctors can combine them have meant better outcomes for people with NHL. The earlier the NHL stage is detected, the better a persons 5-year survival rate is.

If your doctor has prescribed a chemotherapy regimen for you, they should explain how the drugs work to help your body deal with cancer.

See original here:
Chemotherapy for Non-Hodgkin's Lymphoma: What to Know - Healthline

Midland Odessa Pet Of The Week – LoneStar 92.3

Every Wednesday we feature a different pet that needs a new forever home here in the Basin from Lonestar Sanctuary For Animals. Sometimes it's a dog, sometimes it's a cat. They haven't had any guinea pigs, hamsters, birds, or snakes---yet. But you never know!

Meet Rufus!

This big boy looks like the happiest dog in the shelter, but his start to life wasn't a good one. He was literally pushed out of his owner's car with his leash and toy as he watched her speed off leaving him alone and scared! Happily, the staff at the sanctuary took him in. They have been working on teaching him not to jump and to walk properly on a leash. He does love to be in the car and is an excellent car rider! Rufus is a very large Mastiff mix that is over 100 pounds. He is unaware of his huge size and jumps with the excited energy of a playful puppy! The perfect family for Rufus would be someone who is experienced with large energetic dogs and is willing to put in the time to train him! Rufus is not a good fit for someone that has never owned a large dog. Rufus will need his owner to live in a house with a strong fence and a large yard. He has lots of energy and loves to run! No apartments or RVs for this guy! Due to his massive size and energy, Rufus cannot go to a family with kids under 15 years old.

He hasn't been tested with other dogs yet but has only shown curiosity, not aggression when walking by another dog's kennel. Lone Star Sanctuary For Animals is over capacity for dogs so Rufus can't be out in the available dog area. If you are interested in meeting Rufus, let the staff in the office know and they will get him into a yard for you. Rufus is only a year old and adopting him would be at least a 10-12 year commitment. If you are ready to make this big loveable guy your next family member, come meet him during visiting hours of 1-4:30 pm every day except Thursdays!

Once home, remember the rule of three: three days to decompress, three weeks to get used to your routine and home, and three months to feel completely at home.

Lonestar Sanctuary For Animals is located at 4200 Fairgrounds Road in Midland. Visiting hours are 1 pm until 4:30 pm, every dayexceptThursday. And if for some reason you're not looking for a pet right now--please clickSHAREand post this to your social media so we can help this fur baby find a forever home. Or perhaps you're looking for a different new furry friend. There are so many fur babies who would love to meet you so stop by and pay them a visit! There are plenty of dogs and cats to choose from who would love to be your next family member.

The Lone Star Sanctuary For Animals can always use supplies as well so if you can, stop by and drop off a donation to help the staff care for the shelter animals till they can find their forever homes. Needed right now:

Cleaning supplies

Puppy Pee Pads

Blankets

Unopened / New Dog and Cat Food

Cat Litter

Items can be dropped off at the office at 4200 Fairgrounds Road in Midland during business hours. Thank You!

Does your loyal pup's breed make the list? Read on to see if you'll be bragging to the neighbors about your dog's intellectual prowess the next time you take your fur baby out for a walk. Don't worry: Even if your dog's breed doesn't land on the list, that doesn't mean he's not a good boy--some traits simply can't be measured.

To prepare yourself for a potential incident, always keep your vet's phone number handy, along with an after-hours clinic you can call in an emergency. The ASPCA Animal Poison Control Center also has a hotline you can call at (888) 426-4435 for advice.

Even with all of these resources, however, the best cure for food poisoning is preventing it in the first place. To give you an idea of what human foods can be dangerous, Stacker has put together a slideshow of 30 common foods to avoid. Take a look to see if there are any that surprise you.

Continue reading here:
Midland Odessa Pet Of The Week - LoneStar 92.3

How to Protect your Berkshire Home from the Spring Arrival of Bugs and Pests – Live 95.9

With the start of spring bugs and pests seem to come out of the woodwork, literality and figuratively. Nature comes alive in the spring. As the grass begins to turn green and daffodils spout up nature comes alive and with it all sorts of bugs and other pets.

I recently had a casual conversation with Marcus from PestOff Pest Control of Berkshire County. He said that soon everything from spiders, to stink bugs, mosquitos, ticks, and carpenter ants will rear their ugly heads. To minimize the onslaught of pests Markus suggests treating the outside of your home with an insecticide, especially around your homes foundation, windows, and shutters.

Wasps, hornets, and yellow jackets love to set up camp in shutters and underneath patio decks. If you treat these areas early you should not have any issues through the summer. Markus warns of scams offing a very high price that covers your property for a year by commercial pest control companies. According to Markus once the exterior of your home is treated once properly, youre done. Dont pay a premium for a year-long treatment, you wont need it.

Markus said if you are going to treat the outside trouble spots of your home the best time to apply the insecticide is early to mid-April. He said treating the outside of your home with insecticide will not harm your pets. He said the products dry very quickly and once dry they are not harmful.

Unlike the pest treatment for the nooks and crannies around your homes exterior, you will have to repeat treatment of your lawn to protect from misquotes and ticks regularly. To cut down on ticks and mosquitos the best place to focus treatment is where the taller grass meets the shorter grass. For best results that treatment should be applied once a month.

When it comes to mice Marcus points out that if you have entry points into your home mice will always come and go. In the winter they will just set up shop for longer periods of time.

Markus has been in business with PestOff Pest Control since 2013 and is excited about soon celebrating their 10-year protecting the inside and outside of Berkshires homes from pests. Unfortunately, they cant do anything about your unwanted friends and guests. For a free inspection, you can reach out to Marcus at 413-347-0023 or click here for their website and more information.

As Americans watch events unfold in Ukraine, many wonder how they can help. Below is a list of organizations responding to the crisis in Ukraine along with information on how you can support their various missions.

To prepare yourself for a potential incident, always keep your vet's phone number handy, along with an after-hours clinic you can call in an emergency. The ASPCA Animal Poison Control Center also has a hotline you can call at (888) 426-4435 for advice.

Even with all of these resources, however, the best cure for food poisoning is preventing it in the first place. To give you an idea of what human foods can be dangerous, Stacker has put together a slideshow of 30 common foods to avoid. Take a look to see if there are any that surprise you.

More:
How to Protect your Berkshire Home from the Spring Arrival of Bugs and Pests - Live 95.9

Global Pet Stem Cells Market 2021 Recent Developments, Emerging Technologies and Industry Forecast to 2027 Discovery Sports Media – Discovery Sports…

The most recent report distributed by MarketQuest.biz titled Global Pet Stem Cells Market from 2021 to 2027 shows a complete overview of the market that covers various aspects of product definition, market segmentation supported various parameters, and therefore the existing vendor landscape. The report appraises the opportunities and current market situation, giving insights and updates about the relating segments engaged with the worldwide Pet Stem Cells market for the forecast period of 2021-2027. The report is a modest effort of subject specialists and experts to convey market forecast and analysis.

The report has carefully studied factors of paramount importance like drivers & restraints, opportunities, production, market players, competition. It also has separate chapters that include the regional studies to get a picture of the markets with future opportunities followed by the estimated yearly growth during the survey period (2021 to 2027).

DOWNLOAD FREE SAMPLE REPORT: https://www.marketquest.biz/sample-request/45263

The report highlights top applications, which are as follows:

Regionally, this report focuses on several key regions:

The report highlights product types which are as follows:

The following are the prominent players profiled in the market report:

ACCESS FULL REPORT: https://www.marketquest.biz/report/45263/global-pet-stem-cells-market-2021-by-company-regions-type-and-application-forecast-to-2026

Some of The Important Questions Answered By Report:

Customization of the Report:

This report can be customized to meet the clients requirements. Please connect with our sales team (sales@marketquest.biz), who will ensure that you get a report that suits your needs. You can also get in touch with our executives on +1-201-465-4211 to share your research requirements.

Contact UsMark StoneHead of Business DevelopmentPhone: +1-201-465-4211Email: sales@marketquest.bizWeb: http://www.marketquest.biz

Read more from the original source:
Global Pet Stem Cells Market 2021 Recent Developments, Emerging Technologies and Industry Forecast to 2027 Discovery Sports Media - Discovery Sports...

Berkshire Humane Society Pet of the Week: Meet Rusev – Live 95.9

Every Wednesday at 8:30we're joined by John Perreault, Executive Director of theBerkshire Humane Societyto discuss all the happenings at their Barker Road facility, plus talk about their Pet of the Week.

This week's Pet of the Week is Rusev, an 8-year-old neutered American pit bull mix who came to Berkshire Humane Society because of the health of his former family.

Rusev is a handsomebrown/brindle dog with white highlights and although he's good-looking, he could stand to lose a few pounds, but then again who couldnt after the holidays? Get fit and trim with this boy with a heart of gold.

Rusev needs to be the only dog in the home and would do best with children at least 10 years old. Hed also be OK with a dog-savvy cat.

If you are interested in Rusev, please call 413-447-7878, extension 126.

Does your loyal pup's breed make the list? Read on to see if you'll be bragging to the neighbors about your dog's intellectual prowess the next time you take your fur baby out for a walk. Don't worry: Even if your dog's breed doesn't land on the list, that doesn't mean he's not a good boy--some traits simply can't be measured.

To prepare yourself for a potential incident, always keep your vet's phone number handy, along with an after-hours clinic you can call in an emergency. The ASPCA Animal Poison Control Center also has a hotline you can call at (888) 426-4435 for advice.

Even with all of these resources, however, the best cure for food poisoning is preventing it in the first place. To give you an idea of what human foods can be dangerous, Stacker has put together a slideshow of 30 common foods to avoid. Take a look to see if there are any that surprise you.

The rest is here:
Berkshire Humane Society Pet of the Week: Meet Rusev - Live 95.9

Massachusetts Dog Owners: It’s Illegal to Do This with Your Dog in Winter – Live 95.9

While many things seem like they might be and should be common sense, there are still laws to protect not just humans in Massachusetts, but their pets as well.

We all know that wintertime in Berkshire County brings not just snow but freezing cold temperatures which can be harmful to us and of course our fur babies. While it might seem like a no-brainer to keep your dog inside when temperatures are dangerous, there are still regulations in place to protect your pups well being.

In Massachusetts, the laws protecting pets from being left out in freezing temperatures have less to do with the weather and more to do with tethering an animal in general.

According to the Massachusetts Animal Welfare Act (Section 174E of Chapter 140)the stateprohibits tethering dogs outside for more than five hours at a time regardless of the temperature. The same law makes the tethering of dogs anytime from 10:00 p.m. to 6:00 a.m. illegal if it's for more than 15 of a supervised interval. Those who do violate these lawscan be penalizedanywhere between $50 for first offenses to $300 forrepeat offenders.

So what should you do if you know of a dog left out in the cold? The Humane Society of the United Statessays the following:

We encourage you to contact local law enforcement agencies because pets left outside in extreme temperatures, especially without food orshelter, are at risk of hypothermia, frostbite and even death.

So keep those animals safe and bring them back inside after an appropriate amount of time!

Because the regulation of exotic animals is left to states, some organizations, including The Humane Society of the United States, advocate for federal, standardized legislation that would ban owning large cats, bears, primates, and large poisonous snakes as pets.

Read on to see whichpets are banned in your home state, as well as across the nation.

To prepare yourself for a potential incident, always keep your vet's phone number handy, along with an after-hours clinic you can call in an emergency. The ASPCA Animal Poison Control Center also has a hotline you can call at (888) 426-4435 for advice.

Even with all of these resources, however, the best cure for food poisoning is preventing it in the first place. To give you an idea of what human foods can be dangerous, Stacker has put together a slideshow of 30 common foods to avoid. Take a look to see if there are any that surprise you.

Read this article:
Massachusetts Dog Owners: It's Illegal to Do This with Your Dog in Winter - Live 95.9

2021A Turning Point for Alzheimer’s Research and Therapy? | ALZFORUM – Alzforum

19 Jan 2022

Alzforum's review of therapy development for 2020 began with "The drama of aducanumab was the year's big story." In 2021, the drama of aducanumab was, once again, the year's big story. That is true even without the latest plot twist, i.e., the January 11 CMS proposal to cover Aduhelm, and the three other anti-amyloid antibodies in its wings, only as part of clinical trials, i.e., under coverage with evidence development (see news).

The story exploded in June, when the U.S. FDA overruled its internal statisticians and external advisory committee and conditionally approved aducanumab. This garnered some cautious praise, but also unleashed a torrent of criticism that kept on coming throughout the year. Some took the long view, welcoming a new era of mechanism-based treatment and believing that data showing the drug works would come in time. Others, including neurologists and geriatricians, stood aghast at aducanumab's skimpy efficacy data, its broad label, and cost ($56,000/year plus MRI and other fees)all without a peer-reviewed publication on the Phase 3 data.

Six months hence, aducanumab has received some backup. The FDA's claim of a reasonably likely treatment benefit based on amyloid removal drew support from a CTAD presentation reporting that aducanumab had reduced plasma p-tau181 in the Phase 3 trials, i.e., further data toward disease modification. The label has been narrowed to early stage patients like those in the trials, Biogen has halved the price, and Phase 3 safetythough still not efficacydata is published. The field's leaders issued appropriate-use recommendations. An open-label observational study of a representative patient population was announced, as were a national registry to track real-world treatment data, and a May 2022 start for the required Phase 4 trial.

Aduhelm Dunks Tau.Plasma p-tau181 fell in the Phase 3 EMERGE(left) and ENGAGE (right) trials, with higher doses(blue) having a greater effect than low (green). In people on placebo (gray), p-tau rose. [Courtesy of Biogen.]

More broadly, aducanumab's approval occasioned a shift in the field, by spurring investigators to incorporate itor a different anti-amyloid antibodyinto their treatment trials. They will use an anti-amyloid antibody either as one of two drugs in combination trials (e.g., the DIAN NexGen study of both lecanemab and an anti-tau drug), in head-to-head comparison to a competitor's drug (e.g., Lilly trialing donanemab against aducanumab), or, in the future, as a background therapy to the investigational agent at hand.

That said, the aducanumab approval has damaged both Biogen and the FDA. The U.S. federal government is investigating the appropriateness of their interactions prior to June 2021. Scrutiny of the agency's accelerated approval pathway in general has intensified. Biogen's Al Sandrock was forced out, and the FDA's Janet Woodcock was sidelined from contention for her agency's top job. The country's Medicare and Medicaid programs are grappling with how aducanumab will consume their respective budgets, even as independent health economists put the drug's value below its current price. Aducanumab is cited in policy debates calling for drug price-control legislation, and in published critiques of approving drugs based on need more than efficacy. Large health care providers and insurers have declined to administer or cover the drug for the time being, and few patients are receiving it thus far. European Union and Japanese health regulators rejected Biogen's marketing license application, and leading clinicians in Canada called on their agency to do the same.

In December of 2021, formal publication of the extent of ARIA in the Phase 3 trials, together with an ARIA-related death and a report that a majority of Medicare recipients have vascular comorbidities with their AD, revived concern about how patients will fare once aducanumab infusions ramp up beyond the expert ARIA care at academic AD research centers and into community settings across the country.

Despite the controversy, aducanumab's approval has opened the door at the FDAif not at the CMSfor three other anti-A antibodies. In the fall, both Eisai/Biogen's lecanemab and Lilly's donanemab teams requested accelerated approval, using a rolling admission scheme whereby they submit portions of the application as they complete them. For lecanemab, which appears to cause less ARIA than aducanumab and donanemab, 2021 data includes Phase 2 open-label and post hoc analyses showing drastic amyloid removal, change in the desired direction of the plasma A42/40 ratio and p-tau217, and, most importantly, a slowing of cognitive decline. The data supporting the application are published, the confirmatory Phase 3 trial Clarity will read out in the fall of 2022, and a secondary prevention trial is enrolling at 99 sites worldwide.

Lecanemab.During a Phase 2a trial's core period (blue field on left), the ratio of A42/A40 increased in the two treatment groups (green, blue lines) but not the placebo group (black line). During a treatmentgap (orange field), the ratio fell; it rose again once treatment resumed (green field, right). [Courtesy of Eisai.]

For donanemab, 2021 brought similar news. In Phase 2, cognitive and functional decline slowed slightly. Amyloid plaques just about vanished, accompanied by a dent in both plasma p-tau217 levels and tangle growth as per PET. Also, the data supporting Lilly's FDA submission are published, and Phase 3 trials include a fully enrolled confirmatory study in early symptomatic AD and a fledgling secondary prevention study. The main differences to the lecanemab program are in trial designs; the treatment trial tests a shorter treatment course that ends once amyloid plaques are gone, while the prevention trial uses a decentralized approach that does away with most in-person visits to trial sites. In 2021, the cutting edge of innovation has moved to how best to deploy fluid-based markers, and to exploring cognitive and digital markers in hopes of slashing the high failure rate and cost of screening by PET.

Donanemab. Plasma p-tau217 plummets in response to donanemab treatment (right), as does amyloid plaque burden (left). [Courtesy of Eli Lilly.]

Gantenerumab is the third anti-A antibody expected to file for marketing approval this year. It made few headlines in 2021, but all the while was quietly inching forward. Its Phase 3 trials evaluate a formulation that gets injected under the skina simpler and quicker way of receiving a drug than infusionand will start reading out this coming May. The subcutaneous antibody was designed to be given at home, which helped the trials navigate the COVID-19 turmoil without too much attrition. The DIAN trials unit (DIAN-TU) published results of its first treatment trial, which is continuing to administer gantenerumab with good tolerability in its open-label extension. Moreover, DIAN-TU chose gantenerumab for its upcoming primary prevention trial in people as young as 18, who have an autosomal-AD mutation but little or no brain amyloid yet. Finally, a version of gantenerumab engineered to shuttle larger amounts of it into the brain was reported to have done just that in a Phase 1 trial.

Passing Through. Roches brain shuttle (orange/yellow) allows gantenerumab (green) to bind transferrin receptor (blue) and hitch a ride into the brain, where it binds A. [Courtesy of Roche.]

All three antibodies have FDA breakthrough therapy status, expediting review. Barring unforeseen setbacks, their approval is widely expected because the FDA's aducanumab decision has essentially made brain amyloid removal the core requirement for accelerated approval.

In the arena of anti-tau therapeutics, a shakeout finally happened. It had been building since the year before, when four antibodies directed against tau's N-terminus started to wobble. Three fell; one is teetering on the edge. Lilly's zagotenemab exited the ring defeated by a negative 360-person Phase 2 study. Abbvie's tilavonemab stepped down after a negative 453-person trial. Alas, an odd thing happened with the other two contenders. While zagotenemab and tilavonemab were both ineffective yet safe, the remaining two split on this score. In its Phase 2 study of 654 people with early AD, Biogen's gosuranemabworsened scores on the ADAS-cog13, whereas a smaller Phase 2 trial of Genentech'ssemorinemabpunched above expectations. It posted an apparent benefit on one of its two co-primary endpoints; an ongoing open-label extension will show whether the signal has staying power.

In the wake of these losses, the field's searchlight has swung toward targeting tau's mid-region. This is where 2021 showed much activity, though no results yet. At least six such antibodies are wending their way through the clinical pipeline. The farthest along are Janssen's JNJ-63733657 and UCB's bepranemab, which are both in sizeable, international Phase 2 studies. Nipping at their heels, Eisai's E2814 has completed a Phase 1 trial and is starting to be evaluated, by itself and concurrently with lecanemab, in DIAN-TU's Phase 1/2 NextGen trial. Of the three antibodies still in Phase 1, PNT 001 in 2021 reported data from an initial Phase 1 study and started a second trial, Lundbeck's AF 87908 spent 2021 recruiting, and Biogen's BIIB076 had Phase 1 data at CTAD, but no subsequent trials on the docket yet.

Beyond immunotherapies, scientists are attacking tau with small molecules and genetic therapies. On the former front, Lilly advanced its O-GlcNAcase enzyme inhibitor into a 330-person Phase 2 trial, and the startup Asceneuron moved ASN51 into Phase 1. Both drugs are to keep tau from aggregating by boosting its glycosylation. On the latter front, Ionis/Biogen's antisense oligomer BIIB080slashed CSF tau levels by up to half, without serious adverse effects, in a Phase 1/2 trial that is continuing in open-label and expected to be followed with a Phase 2 study this year.

This data renewed hope for ASO treatments of neurodegenerative diseases after a particularly disheartening setback in March 2021, when an independent review board stopped dosing in Phase 3 with the huntingtin ASO tominersen for lack of benefit. This has not stopped ASO development. In 2021, at least six ASOs targeting expression of C9ORF72, SOD1, LRRK2, and FUS, were in Phase 1 to 3 trials for ALS or Parkinson's disease. (Earlier this week, Roche announced it had learned from its phase 3 debacle and would resume evaluating tominersen in a different trial).

Overall, drug development in Alzheimer's is increasingly pursuing targets identified by genomic studies that are fleshing out the pathways underpinning late-onset AD. Besides ApoE, these include targets in lipid metabolism, endosomal/lysosomal/autophagy and, of course, neuroinflammation. Much of that work remains preclinical. Notable clinical examples include therapeutic antibodies activating Trem2 signaling,antibodies targeting sortilin, and attempts to boost progranulin levels via gene therapy or small molecules.

Last, but not least, the old idea of repurposing, for AD, approved drugs that were originally made for other diseases drew new support in 2021, buoyed by government and private funders that push for diversification beyond A and tau. Current attempts include bosutinib, dasatinib,atomoxetine, or liraglutide. None have posted robust benefits thus far.

With regulatory approval for additional amyloid immunotherapies under consideration, blood-based markers could not have come at a better time. Evidence grew last year that A42/40, various phospho-tau, and other plasma proteins will be valuable, if not as stand-alone diagnostics, then as screening tools to enrich trial populations and to limit reliance on expensive PET scans. Thats not to discount brain imaging. These direct measures of brain pathology continue to reveal new insights, particularly about disease progression.

For fluid markers, mass-spec assays came out on top in head-to-head testing for plasma A42/40. Scientists also reported that Precivity, C2Ns mass-spec test, detected change in the A42/40 ratio in blood years earlier than in CSF, suggesting that slowing A42 clearance from the brain might be one of the earliest signs of AD. There is debate about how robust a marker this ratio can be, given the small difference between amyloid-positive and -negative people. Even so, Precivity is being used in screening for the ongoing AHEAD 3 and AHEAD 45 secondary prevention trials.

Ruled Out. A plasma A42/40 cutoff (vertical line) could screen out amyloid-negative people, enriching clinical trial populations for participants with brain amyloid pathology. [Courtesy of Christina Rabe, Genentech.]

On the tau front, new data suggests that baseline levels and change in plasma p-tau181 predict not only amyloid and brain atrophy, as had been found previously, but neurodegeneration and cognitive decline as well. Scientists are actively dissecting tau to document all its forms and fragments that get secreted into the blood; at this point in time, it appears that p-tau231 may be the first to tick up. Tau alone appears insufficient to diagnose AD, but researchers have begun to pile various plasma markers and demographic variables into diagnostic algorithms. Glial markers come in here, too. Levels of GFAP and YKL40 were found to rise in CSF and plasma early on, maybe even before p-tau231. A preliminary analysis suggested a panel of 19 plasma proteins could predict AD with up to 97 percent accuracy. If this holds, it would be the best blood diagnostic to date.

Only if A-Positive. Brain atrophy as per MRI (left) associated with plasma p-tau181, but only in cognitively unimpaired, amyloid-positive people, implying that blood p-tau181 reflects brain A plaques. [Courtesy of Moscoso et al., JAMA Neurology, 2021.]

Of course, no experimental marker will be used for diagnosis without robust, validated, and certified assays. On that score, the Bio-Hermes initiative made news last year. This collaboration of 10 companies will assess the accuracy of low-cost, rapid blood tests for amyloid and cognitive decline, as well as of digital biomarkers. App-based cognitive tests and artificial intelligence-based analysis of behavioral patterns are gaining traction as potential diagnostics.

On the brain-imaging front, the predictive power of MRI and PET shone last year. Scientists found that waning MRI signals from the locus coeruleus (LC), a speck in the brainstem packed with noradrenergic neurons, correlate with plaque and tangle load and might represent an early warning of impending AD. The LC is one of the first regions of the brain to accumulate tangles, which evade detection by PET because this cluster of neurons is so small. On the amyloid front, scientists found that once plaques have crossed a certain threshold, they accumulate at the same steady rate in everyone, like clockwork. In other words: A single amyloid PET scan can extrapolate when a person will begin to develop symptoms of dementia. As for how that dementia will proceed, here tau imaging stood out. This surprised no one, since tau pathology correlates better with cognition. When compared directly with A PET and structural MRI, tau PET best predicted falling MMSE scores.

Amyloid Clock. Taking each persons amyloid accumulation trajectory versus age from a spaghetti plot (left) and lining them up using years since the person reached SUVR of 1.2 on PiB PET (right), reveals that plaques grow at the same rate in everyone. [Republished with permission, 2021 American Academy of Neurology.]

If you thought geneticists were slowing down, think again. For one, they found a new APP variant that causes autosomal-dominant AD. Dubbed Uppsala, this multi-codon deletion clips six amino acids from the middle of A, speeding its production and boosting its propensity to aggregate.

Nip and Tuck. The Uppsala mutation, circled red, snips out residues 690-695 of APP.

For another, a massive GWAS meta-analysis fished out 42 new risk loci for late-onset AD. Most fell into known pathways, such as APP processing, endosomal/lysosomal function, and innate immunity, in keeping with the cellular phase of the disease being marked by dysfunctional protein trafficking and microglial activation.

TREM2 Connection. Bubbling up from the MS4A gene cluster (bottom) are many variants linked with AD (middle). Variants at this locus associate with reduced plasma sTREM2 (top). [Courtesy of Ferkingstad et al., Nature Genetics, 2021].

Newer approaches in search of functional risk variants merged GWAS with proteome- or transcriptome-wide association data. One such PWAS x GWAS turned up 10 new AD genes, while a TWAS x GWAS spat out 11 Parkinsons disease loci, four of them new. Studies of protein quantitative trait loci (pQTL) have started to pay dividends, as well. One linked protein levels in brain parenchyma, cerebrospinal fluid, and plasma to 433 gene loci, tying 20 proteins to AD risk. Similarly, a pQTL study of 35,000 Icelanders identified more than 18,000 loci that will help connect the dots between risk alleles and disease, starting with a link between the two known AD risk loci MS4A and TREM2.

Given that a person might carry myriad variants that each increase or decrease his or her likelihood of getting AD by a few percent, what do they all amount to? Looking to centenarians for clues, scientists realized that some live longer than most of us not because they got stuck with fewer risk alleles, but because they are blessed with rare variants that protect against age-related diseases, including AD and diabetes. Polygenic risk scores will help explain why. Last March, the U.K. company Cytox Ltd. introduced genoSCORE-LAB, a test that types not only AD variants that pass thresholds for significance in GWAS, but also variants that just miss the mark yet might be meaningful. The polygenic AD score tallies risk from 114,000 such loci and is sold to physicians in the U.S., U.K., and EU.

Scientists are slowly beginning to understand the wild and varied world of microglia. In 2021 a subtype emerged that regulates synaptic plasticity. Another mops up fraying myelin; dubbed white-matter-associated microglia or WAM, it seems to let plaques grow. More evidence strengthened the idea that yet other microglia restrict plaque growth by using lysosomes as trash compactors to compress A, which they then spit out as dense core plaques. This process may protect the brain from more toxic, diffuse amyloid. If that isnt enough, microglia may drive formation of tau aggregates according to a PET study that correlated microglial activation with the subsequent arrival of nearby tangles.

Pack It Tight. Microglia around plaques take up loose amyloid (yellow fuzz) using TAM receptors, and condense it (red cross-hatches) in their lysosomes. Then they expel this material, building dense-core plaques. [Courtesy of Huang et al., Nature Immunology.]

Hello Microglia? PS2APP amyloid-laden mice (left) take up plenty of FDG (orange). Killing off their microglia (middle) drops the signal below that of wild-type (right). [Courtesy of Xiang et al., Science Translational Medicine.]

Still, much remains unknown about these polymorphic cells, particularly what drives them to disease-associated or inflammatory phenotypes. Besides amyloid, one trigger might be signals from nearby astrocytes, or simply age, which seems to send these cells into a metabolic tailspin. Along the way, AD-associated microglia may replicate their DNA and divide so many times that they enter a toxic, senescent state. One provocative study even suggested that microglial activation accounts for much of the well-known FDG PET signal in early stage AD brain.

A new APP knock-in mouse model may help scientists better understand microglia. In addition to developing rampant plaques, these mice mobilize microglia that adopt a transcriptional profile similar to that seen in AD. The glia surround plaques, and they fill up with A and lipids. Levels of the microglial receptor and AD risk factor TREM2 also spike in the animals brains.

Used to taking a back seat to microglia in the lab, these most numerous cells in the brain came to the fore last year. Research offered several explanations for how astrocytes turn toxic in neurodegeneration. One study found that when their lysosomes stop working, astroglia dump the organelles and their contents into the extracellular space, where they kill nearby neurons. Another attributed astrocyte neurotoxicity to long-chain fatty acids, as removing a lipid elongase called ELOVL1 reined in reactive astrocytes. Scientists also discovered a tau-driven path to toxicity. Astrocytes exposed to tau oligomers entered a senescent state, releasing a protein that propagates senescence to nearby cells, exacerbating tau toxicity and accelerating its spread. A consensus effort among astrocyte and neurodegeneration scientists called for nuanced, multivariate characterization of reactive astrocytes, and proposed a more consistent terminology (Escartin et al., 2021).

And of course, glial cells talk to each other. Adding to this theme, scientists last year reported that a subset of astrocytes make interleukin-3, a cytokine attributed to immune cells. They showed that, in AD, microglia make more IL-3 receptors, and that the IL-3 released by astrocytes strengthens signaling downstream of TREM2, a microglial cell surface receptor needed for clearing A.

Mention of astrocytes requires a shout out to ApoE, as they produce the lions share of it. Astrocytes expressing this genetic risk factor for AD accumulate unsaturated fatty acids as lipid droplets. How the droplets might factor in AD is unclear, but adding the lipid precursor choline restored lipid metabolism back to normal. In mice expressing human ApoE isoforms, deleting ApoE4, but not ApoE3, specifically in astrocytes protected against tau toxicity and neurodegeneration. This, too, seems to require glial cross-talk, because taking astrocyte ApoE4 out of the picture dampened microglial phagocytosis of synapses.

Speed Traffic, Lose Plaque? Amyloid (white) in 1-year-old APP knock-in mice (left) was nearly prevented by knocking out the gene for the endosomal proton leak channel NHE6 (right) when the animals were 2 months old. Ablating NHE6 reduced endosome pH and increased ApoE recycling. [Courtesy of Pohlkamp et al., eLife.]

Boosting ApoE recycling through the endosome/lysosome system might be a therapeutic avenue worth exploring. Scientists reported that ApoE4 becomes sticky at pH 6.4, the precise acidity of early endosomes. Lowering the vesicle pH a smidgen in neurons was enough to restore ApoE4 trafficking, and relieve amyloidosis in mice. Alternatively, upping expression of the low-density lipoprotein receptor, which binds ApoE, dramatically lowered levels of the apolipoprotein in mouse brain, tempered microglia, and reduced toxicity in a mouse model of tauopathy.

LDLR: Guardian Angel? Synapses (red) are dense in the wild-type mouse hippocampus (left), lost in P301S mouse hippocampus (center), and partially preserved by LDLR overexpression (right). [Courtesy of Shi et al., Neuron.]

Last year brought the stunning revelation that the mammalian brain has its own collection of adaptive immune cells patrolling its border. Scientists found skull bone marrow brimming with monocytes and B cells. These squeeze through narrow channels in the cranium into the meningeal membranes that surround the brain. From there, the cells infiltrate the parenchyma or spinal cord in response to inflammatory signals, all without ever seeing the inside of a blood vessel, let alone the spleen or thymus, where B and T cells typically mature. Some think this private stock of adaptive immune cells arose to distinguish the brain as self and safeguard its privilege. Others doubt the role of the skull bone marrow. They report that the meninges themselves generate brain B cells. Single-cell RNA-Seq analysis found niches of mature and immature B cells in the dura matter.

Marrow to Meninges. The bone marrow (BM) contains B cells (green) that cross physical channels into the dura (left). The transiting B cell (arrowhead) expresses no IgM (right), indicating it is still developing. [Courtesy of Brioschi et al., Science, 2021.]

Do these newly discovered immune cells play a role in disease? This will likely be an area of intense research, and Alzforum will monitor news from these border tissues. One idea is that as mice age, T cells accumulate in their meninges, where they enter an immunosuppressive state. This appears to pose a plethora of problems, including with glymphatic flow, microglial function, plaque accumulation, and memory decline. The meninges themselves also turned out to boost clearance of amyloid from the mouse brain by passive immunotherapy.

Atlas of the Vasculature. Mural cells on blood vessels in the human brain fall into four distinct groups: arterial smooth muscle cells (aSMC), arteriolar SMCs (aaSMC), matrix-specialized and transport-specialized pericytes (M-pericytes, T-pericytes). [Courtesy of Yang et al., 2021.]

Lest we forget about peripheral immune cells, evidence continued to build that they can invade the brain, with potentially disastrous consequences. For example, T cells that recognize -synuclein were seen surrounding Lewy bodies in the brain and flood these areas with the inflammatory cytokine IL-17A.

How peripheral cells squeeze through the blood-brain barrier remains a bit mysterious. High-resolution expression maps of the human brain vasculature should help address this and other questions about blood vessels and neurodegeneration. Last year, scientists found a way to isolate vascular and perivascular cells from postmortem brain tissue that was compatible with single-nuclei RNA-Seq, dubbed VINE-Seq. Besides identifying new types of pericytes and fibroblasts, this method revealed that vascular cells express 30 of the top 45 AD risk genes, implying that their role in this disease is underappreciated. A similar, single-nuclei spatial expression analysis found that, as mice age, inflammation ramps up in their choroid plexus, the network of vessels that surround the brain's ventricles and produce the cerebrospinal fluid.

Despite decades of work, scientists still lack a firm grasp of how plaques, tangles, and other types of amyloids form and spread in the brain. Last year, new clues came from using stable isotope labelling kinetics to study the formation of plaques in real time in mice. A42 formed dense cores first, then A38 added itself to the plaque's periphery. Whether plaques form this way in the human brain remains to be seen.

Folds of a Feather Flock Together. Dendrogram of a proposed structure-based classification of tauopathies. Colors denote microtubule-binding domains R1 to R4, arrows denote -strands. Non-protein entities are in black. [Courtesy of Shi et al., Nature 2020.]

As for tangles, scientists discovered that they are far from inert tombstones, as had been thought. Instead, tau drifts in and out, with a half-life of about a week. Plus, there may be more to plaques and tangles than A and tau. Other amyloidogenic proteins and peptides insinuate themselves into both, and their expression patterns might explain why some neurons are more prone to forming amyloids. A form of RNA even gets into the mix: methylated RNA and its protein partner, HNRNPA2B1, were reported to bind tau and pile up in tangles as AD worsens.

Scientists have long wondered whether the spread of amyloid seeds from region to region, or de novo emergence of amyloids in vulnerable cells, explains the progression of AD and related diseases. A kinetic model of tangle growth came down on the side of the latter. It suggested that replication of tau seeds sets the pace for tangle accumulation, and that spread plays but a negligible role.

Double Spiral. Protofibrils of TDP43 taken from two people who had ALS/FTD adopt the same fold. [Courtesy of Arseni et al., Nature, 2021.]

Then what makes cells vulnerable? On this old question, a single-nucleus RNA-Seq study pointed at subsets of excitatory neurons found close to tangles that express the transcription factor RORB, whereas a subset of astrocytes in the same vicinity may exacerbate the situation by failing to protect the neurons.

In 2021, years of effort solving cryo-EM structures culminated in a family tree of tau protofibrils. Comparing new structures for a group of 4R tauopathies to previously reported ones from 3R- and mixed 3R+4R tauopathies, scientists found that the unique way tau contorts itself within a protofibril maps onto the neuropathological characteristics of each disease. In a surprise twist, the first high-resolution cryoEM structure for TDP-43 fibrils taken from the human brain showed that its core structure resembled no other amyloid.

Big data comes with big promises, and fulfilling them can be easier said than done. Years of anticipation about leveraging artificial intelligence and other statistical packages to draw knowledge out of reams of transcriptomic, proteomic, metabolomic data have produced no major Eureka! moments yet. Still, scientists wrangling these large datasets are beginning to make progress. Large-scale surveys of proteomes and transcriptomes helped them distinguish, in greater detail than ever, the Alzheimer's brain from a healthy one. Bulk RNA-Seq analysis proposed three distinct types of Alzheimers. One looked like typical disease, with plaques, tangles, and neuroinflammation, while the other two featured tau pathology more prominently. A machine-learning analysis of the largest collection of tau PET scans to date predicted four subtypes of AD. And a single-nucleus RNA-Seq approach found unique clusters of cells in autosomal-dominant AD that distinguish it from sporadic AD.

Gene Drivers. Network analysis identifies key genes that are down (left) or up (right) in three molecular subtypes of AD. Two, B and C, can be further divided, for a total of five. [Courtesy of Neff et al., Science Advances/AAAS.]

Scientists are also using omics approaches to unravel early changes in the AD brain. Proteomics identified 53 proteins that are up- or downregulated at different stages of the disease. Proteins that function in endocytosis or synapses fluctuated in the preclinical stage. Reaching back further, scientists used massive gene-expression datasets to identify transcriptomic signatures in healthy people aged 45 to 70 that resemble transcriptomes of AD patients, perhaps explaining how aging increases risk for the disease in some more than others.

And in a tour de force, researchers combined electron, super-resolution, and fluorescent microscopy with mass spectrometry to map stubby and dendritic spines in exquisite detail. This nanoscopy approach could show scientists what happens when synapses are lost in AD and other neurodegenerative diseases. A new technique called SynTOF, aka synaptic mass spectrometry, enabled analysis of millions of individual synapses from AD and control brains. This study found that spines coated with CD47 were more likely to survive in people who had tau pathology. Usually associated with cancer, this immune receptor has not been studied much in the brain, but might act as a dont eat me signal for microglia as they prune spines.

Anatomy of a Spine. Video model of an average mushroom spine shows tight packing of myriad cell surface and cytosolic proteins, structural elements, and organelles. [Courtesy of Helm et al., Nature Neuroscience, 2021.]

With large omics projects, replication becomes a problem for the field, especially without standards for data gathering and analysis. To help with that, last year the NIH announced the human induced pluripotent stem cell Neurodegenerative Disease Initiative, or iNDI. IPSCs are widely used and often get differentiated into neurons and glia, which then serve to model disease risk or progression. But with so many labs using their own in-house cell lines, comparing data across labs becomes daunting. iNDI will engineer healthy donor cells to carry one of 134 genetic variants associated with neurodegeneration, and will make differentiated cells and data available.

We almost did it: write a 2021 roundup without mentioning the word we are all so tired of. COVID. Alas, we must. Besides the pandemics ongoing impact on research, the virus itself affects the brain in some people, and last year, clinicians realized that COVID can worsen existing neurologic conditions. Exactly how remains to be worked out, but people who are ApoE4-positive are more susceptible to coronavirus infection and severe illness.

Spiking Amyloid Transmission? Donor HEK cells (left) bearing aggregates (red) of the NM domain from the yeast prion Sup35 were co-cultured with Vero cells expressing soluble NM (green). If the donor cells expressed the Sars-CoV-2 spike protein (right), then NM aggregation in Vero cells accelerated. [Courtesy of Liu et al., Nature Communications, 2021.]

Whats more, SARS capsid glycoproteins, including spike, may promote release of extracellular vesicles that could spread amyloidogenic proteins. In an odd twist, scientists found that SARS-CoV-2 only infects cells that express the lysosomal receptor TMEM106B, whose gene has known risk variants for AD and FTD; whether those affect COVID is unclear. As for other viruses, the controversy about Herpes simplex and AD risk endures. One 2021 study found no consistent correlation across four European countries, while another, of more than half a million people in Sweden, linked untreated herpes infection to higher dementia risk, particularly in ApoE4 carriers.

If 2020 was the year Alzheimers researchers absorbed, and adjusted to, the shock of COVID-19, 2021 was the year they had settled into their new circumstances and made them work. Now, 2022, we expect better from you!Tom Fagan and Gabrielle Strobel

No Available Further Reading

See more here:
2021A Turning Point for Alzheimer's Research and Therapy? | ALZFORUM - Alzforum

Indiana Dog Is Too Shy To Let You Know How Very Much He Wants To Be Adopted [VIDEO] – wkdq.com

Allow us to introduce you to this week's Pet of the Week from theVanderburgh Humane Society. Meet Leo.

Fill out the adoption form atvhslifesaver.org.

Wanna watch cats playing LIVE 24/7 (if theyre not sleeping) on their new Petcube Play in the Cageless Cat Lounge and at the River Kitty Cat Cafe. Download the free Petcube app, create an account, and find VHS Cat Lounge. The camera runs all the time and if you turn your phone to landscape, you can control the built-in laser pointer and play with the kittens!vhslifesaver.org!

KEEP LOOKING: See What 50 of America's Most 'Pupular' Dog Breeds Look Like as Puppies

To prepare yourself for a potential incident, always keep your vet's phone number handy, along with an after-hours clinic you can call in an emergency. The ASPCA Animal Poison Control Center also has a hotline you can call at (888) 426-4435 for advice.

Even with all of these resources, however, the best cure for food poisoning is preventing it in the first place. To give you an idea of what human foods can be dangerous, Stacker has put together a slideshow of 30 common foods to avoid. Take a look to see if there are any that surprise you.

Does your loyal pup's breed make the list? Read on to see if you'll be bragging to the neighbors about your dog's intellectual prowess the next time you take your fur baby out for a walk. Don't worry: Even if your dog's breed doesn't land on the list, that doesn't mean he's not a good boy--some traits simply can't be measured.

Handsome Ralph Reminds You To Microchip Your Pets

Tristate Pet Quirks That Will Make You LOL

Check out these 50 fascinating facts about dogs:

Continued here:
Indiana Dog Is Too Shy To Let You Know How Very Much He Wants To Be Adopted [VIDEO] - wkdq.com

Back to Top