header image

Page 32«..1020..31323334..4050..»

[Full text] Osteonecrosis of the Jaw Beyond Bisphosphonates: Are There Any Unknown | CCIDE – Dove Medical Press

Introduction

Recent literature reviews suggest that bisphosphonates (BPs) may contribute to the growing number of cases of osteonecrosis involving the maxilla and mandible that are associated with the pathogenesis of BP-related osteonecrosis of the jaw (BRONJ).1 In the discussion concerning BRONJ, a distinction must be made between diseases featuring reduced osseous mineral content, which may be counteracted by BPs (such as those occurring during menopause or in cases of osteoporosis), and cases that present with indications for BPs (such as tumors). BPs have been used in the treatment of multiple myeloma, breast cancer, prostate cancer, and other tumors. In patients with metastatic breast cancer, the bones are affected in around two-thirds of cases. To protect patients from bone fractures and to reduce pain, patients are often prescribed BPs or a special antibody that prevents the breakdown of, and subsequently stabilizes, affected bone. BRONJ is a newly emerging problem that is recognized as a serious complication of BP therapy, primarily following intravenous (IV) administration.2

The concern is that BPs affect the natural remodeling of bone tissues and delay the breakdown of older bone structures. BPs are potent inhibitors of bone resorption and have a chronic effect over a half-life of at least 5 years, possibly exerting their effects for more than 10 years. BRONJ is a seemingly growing epidemic associated with osteonecrosis of the jawbone (ONJ).35 The long-term effects of oncological-related BP treatment on alveolar bone quality include the impact on BP-induced overexpression of alveolar bone remodeling. There are increased osteosclerotic properties in the alveolar bone that are associated with significantly greater bone volume and higher bone density.6,7 The risk of BP therapy is divided into two categories: local and systemic risk factors; thus, a distinction must be made between oral and IV administration. Local oral risk factors for BRONJ in cancer patients include dentoalveolar surgery, dental extraction, and dental implant insertion.8 Periodontal infections also significantly increase the risk of BRONJ in cancer patients.9 In addition, there is a significant correlation between the use of removable prostheses, the administration of high-dose IV BPs, and an increased risk of BRONJ.10 In patients receiving oral BP therapy for the treatment of osteoporosis, the prevalence of BRONJ only increased 0.21% from close to 0%. Systemically, however, there is a much higher risk associated with the IV injection of BPs. This is closely related to the frequent use of BPs in cancer patients who receive a significantly higher total dose over a longer duration.11 The mean and minimum time for the development of ONJ is 1.8 years and 10 months, respectively.12 The risk of BRONJ in cancer patients exposed to BP therapy is from 50100 times higher than in cancer patients treated with a placebo. The BRONJ risk for the RANKL inhibitor denosumab was between 0.7% and 1.9%.13,14 The risk of ONJ in cancer patients treated with high doses of IV BPs appears to be significantly higher: in the range of 110 per 100 patients (depending on therapy duration).15 A recent review reported a wide-ranging BRONJ incidence of 027.5% that was associated with the IV administration of BPs, with an average incidence of 7%.16 The cumulative frequency varied from 0.812.0% and was estimated to be up to 30.0% in some reports.17,18 Despite numerous publications on the subject, the overall pathogenesis of BRONJ does not yet appear to be fully understood. In particular, the reasons why only a subset of patients (<30%) receiving IV BPs develop BRONJ remain unclear. Although most patients that develop BRONJ have a history of tooth extraction or injury, these factors do not fully explain the occurrence of BRONJ.8 The development of BRONJ in edentulous areas in patients with no apparent history of injury suggests that pre-existing conditions, such as subclinical infections or potentially necrotic areas of the jawbone, may contribute to the conditions that lead to the development of BRONJ.

Why does BRONJ develop in up to 30% of individuals following IV BP therapy and not the remaining 70%? This review raises the question of whether little-known or difficult-to-identify, pre-existing, impaired bone remodeling, such as that occurring in aseptic-ischemic osteonecrosis of the jaw (AIOJ), bone marrow defects (BMD), or fatty-degenerative osteonecrosis of the jawbone (FDOJ), represents a local risk factor in the development of BRONJ.

There is still a limited scientific understanding of the relationship between ONJ and BPs.19 In order to clarify the research question and present the background and specific common characteristics of AIOJ/BMD/FDOJ and BRONJ, an extensive literature search was carried out in PubMed Central. In the literature, the terms aseptic-ischemic osteonecrosis of the jaw (AIOJ), bone marrow defects (BMD), and fatty-degenerative osteonecrosis of the jawbone (FDOJ) are used to describe an intramedullary phenomenon with the same pathogenesis, morphology, and pathohistology.

The American Association of Oral and Maxillofacial Surgeons published four staging criteria (at risk, Stage 03).20 Stage 0 is of particular interest in our research as it refers to patients with no clinical evidence of exposed bone, but presence of non-specific symptoms or clinical and/or radiographic abnormalities. The discussion concerning BRONJ is complicated by the fact that there are two clinical forms of BRONJ. The first presents as exposed bone in the maxillofacial region with clinically recognizable necrotic bone that is visibly exposed through the oral mucosa or facial skin, and present for more than 8 weeks, which is referred to as so-called exposed BRONJ.15 The second form of BRONJ is particularly interesting for our investigation; it was recently emphasized that BRONJ does not always appear with necrotic bone visible through a breech in the oral mucosa.21 This form is referred to as non-exposed BRONJ (NE-BRONJ). In the absence of exposed bone, it is characterized by clinical features associated with the jaw, such as unexplained jawbone pain, fistulas/sinus tracts, loose teeth, and swelling.22,23 Diagnosing NE-BRONJ is difficult, as other common jawbone diseases, such as odontogenic infections, may cause similar symptoms and must be excluded. The non-exposed variant may comprise up to one third of all BRONJ cases and is thus not uncommon;24 however, this previously underestimated NE-BRONJ is difficult to accurately diagnose. Recently published papers emphasize that NE-BRONJ has received little attention so far and does not fulfill the current definition of BRONJ.25 Nevertheless, NE-BRONJ belongs to the same disease as exposed BRONJ and should be identified as part of the full spectrum of BRONJ (see the section titled, Case descriptions of AIOJ/BMD/FDOJ, non-exposed BRONJ, and Actinomyces colonization).26

Our investigation requires the identification of the basic immune mechanisms associated with BP administration. Specifically, which mechanism is behind the anti-tumor activity of BPs in cancer patients?

Various studies postulate that BPs change the bone microenvironment around cancer cells, which may prevent cancer cell survival and disease recurrence.27 BPs may also reduce the appearance of disseminated tumor cells. The formation of metastases is complex; mesenchymal stem cells (MSCs) are predominantly found in the bone marrow.28 MSCs may contribute to the formation of metastases through various mechanisms: (1) MSCs are recruited to develop breast tumors where they can enhance the metastatic potential of weakly tumorigenic breast cancer cells;29 (2) MSCs and other bone marrow cells may form a pre-metastatic niche within the specific tissues to which tumor cells metastasize;30 and (3) MSCs are able to maintain the growth and survival of cancer cells in the bone microenvironment where they may contribute to the formation of niches for dormant micrometastases that can later form distant metastases. BPs significantly reduce the ability of MSCs to migrate, thereby reducing the growth and survival of cancer cells.31 Thus, the effects of BPs on MSCs in the bone marrow microenvironment contribute to anti-tumor activity by affecting the ability of MSCs to migrate and develop tumors in pre-metastatic niches. BPs disrupt the interaction between MSCs and breast cancer cells within the bone microenvironment, where BPs may also directly inhibit breast cancer cell growth.

The antiangiogenic effect of BP administration in tumor patients also plays a role in therapy.32 When administered systemically, BPs effectively inhibit angiogenesis. The pronounced antiangiogenic properties of BPs enhance their effectiveness in the treatment of malignant bone diseases. In addition to suppressing RANTES/CCL5 (R/C) expression in MSCs, BP administration plays a role in the treatment of tumor patients.33 Similar to exogenous glucocorticoids and estrogen,34 BPs are ischemic and hypoxia-related stressors of bone health that alter jawbone metabolism, thus leading to osteonecrosis. While tumor-associated BP therapy is currently the heavy weight for bone health, it may accelerate existing, chronic pathophysiological events within the microcirculation of bone marrow compartments in the jaw. BRONJ development is often characterized by a slow start and usually presents with infarcts and thrombosis of small vascular sections of the supplying artery within the medullary canal; these features also correspond to AIOJ/BMD/FDOJ. Myeloid elements (including fat marrow) liquefy and cancellous trabeculae are resorbed, so that individual bone spaces merge and gradually create larger cavities.

If we compare the findings in the sections titled, Bisphosphonates and mesenchymal stem cells and Bisphosphonates and antiangiogenesis to pre-existing AIOJ/BMD/FDOJ, several strikingly common characteristics shared by BRONJ and AIOJ/BMD/FDOJ can be observed that help to answer our research question. In the sections following Bisphosphonates and antitumor therapy, we present the foundations for the development of AIOJ/BMD/FDOJ and draw similarities with the development of BRONJ.

The key function of proinflammatory chemokines R/C in the formation of breast cancer and its metastasis, as well as a possible connection with the intramedullary signaling of R/C overexpression from AIOJ/BMD/FDOJ areas, has been pointed out in previous studies.35,36 The conspicuous overexpression of R/C in little-known BMDs, as found in AIOJ/BMD/FDOJ, has been reported.37,38 R/C overexpression is a regulator of healthy bone metabolism in bone needing repair. The starting point for a typical AIOJ/BMD/FDOJ BMDs is the expression of R/C and its chemokine receptors (CCR5) in both osteoblasts (OBs) and osteoclasts (OCs). Ligands (CCL5) and receptors (CCR5) simultaneously activate autocrine and paracrine mechanisms in the bone.39 One study examined the effects of BPs on human primary OBs and was able to show that the overexpression of proinflammatory R/C from BP-treated OBs also occurs in areas affected by BRONJ.40 The secretion of proinflammatory cytokines interleukin (IL)-8 and R/C increased after 14 days of treatment with the highest dose of BPs.40 The complexity of cytokine control becomes clear at this point. In contrast to the tumor, where BPs in the MSCs reduce R/C expression to such an extent that metastasis is prevented, R/C expression is increased by BPs in OBs. If AIOJ/BMD/FDOJ is already present, it may be assumed that the associated increased R/C secretion is thus further increased by BPs. Specifically, NE-BRONJ may develop as BPs increase the expression of IL-8 and R/C.41 Other researchers have confirmed increases in the secretion of proinflammatory IL-8 and R/C from BP-treated OBs.42 Combined with the lower proliferation rate of OBs and a decrease in their differentiation, higher doses or accumulations of BPs cause undesirable local changes in the bone by increasing the secretion of IL-8 and R/C from OBs. If these findings are applied to BP administration in the context of a chronic, pre-existing AIOJ/BMD/FDOJ area, then such areas may be expected to exhibit increased R/C secretion in response to BPs. This increase may result from the inhibition of OC activity, leading to the development of BRONJ. Figure 1 summarizes the effects of BP administration on the pre-existing physiological derailments associated with tumor and osteoporosis development.

Figure 1 Comparison of the effects of BP administration (+BP) in the context of a tumor (upper part of Figure 1) and pre-existing osteoporosis (lower part of Figure 1). Legend: The red arrows indicate overactivity; the green arrows show reversal following BP administration.

In the literature, the vascular composition of AIOJ/BMD/FDOJ is characterized by the fact that blood flow in the medullary canal is impaired by micro-infarcts, which leads to chronic marrow ischemia.43 BRONJ also shows reduced vascularization in the medullary canal.44 Several publications have shown that ischemic bone diseases such as AIOJ/BMD/FDOJ and BRONJ are of multifactorial origin and emphasize the multiple stroke model as the cause of ischemic bone diseases.45,46 In the orthopedic literature, intensive research conducted on the development of ischemic bone disease in the early stages of the disease process is presented.47 Our aim here is to apply this knowledge not only to extreme forms of the disease, such as osteoradionecrosis and BRONJ, but also to chronic, subclinical, and ischemic forms such as bone marrow edema and AIOJ/BMD/FDOJ, which often progress asymptomatically. Many of these forms are manifestations of both local and systemic risk factors that compromise circulation in the bone marrow, and may also impact on the homeostasis of bone resorption and formation, in addition to BP therapy. The importance of this multifactorial exposure to risk factors for ischemia and the associated causal genetics that are very similar to those in cases of AIOJ/BMD/FDOJ is shown by observing how bone that is exposed to BPs demonstrates minimal OC activity, followed by the deposition of newly formed, thicker bone with reduced vascular supply.48 The resulting mosaic-like pattern of bone remodeling is strikingly similar to that found in Pagets disease, which tends to be associated with the development of osteomyelitis.49 Similar to AIOJ/BMD/FDOJ, the remodeling induced by BPs leaves cavities, otherwise known as cavitations, which leads to both necrosis and unlike that which is found in AIOJ/BMD/FDOJ subsequent infection by colonizing bacteria. Many patients with AIOJ/BMD/FDOJ have inherited prothrombotic tendencies, which is comparable to what is found in patients with idiopathic osteonecrosis of the femoral head (Pagets disease) and includes thrombophilia and hypofibrinolysis.5052 Although a consensus has been reached that ischemic marrow edema is not part of the pathogenesis of BRONJ,53 it is regarded as a typical characteristic of AIOJ/BMD/FDOJ, serving as a precursor to BRONJ development. Systemic antibiotic therapy has limited access to these avascular zones and surgical debridement is usually necessary.

The initial OB situation found in AIOJ/BMD/FDOJ is highly characteristic; under pathological conditions, OBs express R/C chemokines in a non-physiological manner.54,55 The increasing frequency of ONJ and its possible association with high cumulative doses of BPs was investigated in one study, which concluded that high doses of BPs had both OC and OB effects, and thus bone remodeling was inhibited in vivo.56 Other researchers have examined the proliferation, viability, expression, and secretion of bone markers and cytokines/chemokines from primary OBs following exposure to BPs.42 Increased concentrations of proinflammatory cytokines were found in response to BPs. Similarly, increased R/C expression is present in AIOJ/BMD/FDOJ. Following treatment with the highest dose of BPs, the secretions of proinflammatory cytokines IL-8 (P<0.001) and R/C (P<0.001) were significantly increased after 14 days. In addition, the secretion of proinflammatory R/C from OBs exposed to BPs increased. It has also been determined that R/C plays a role in the etiology of the osteolytic changes that are present in AIOJ/BMD/FDOJ.37,57 The aim of another study was to investigate the effect of BPs on human OBs in vitro, while considering RANKL and osteoprotegerin (OPG), both of which mediate OC differentiation.40 OPG increased significantly in the group that received BPs at a dose of 10 M, while RANKL expression decreased significantly with different concentrations of BPs. In summary, exposure to various BP concentrations had a positive effect on OB differentiation, but did not affect proliferation. In contrast, the BP-associated changes in RANKL and OPG production contributed to the suppression of osteoclastic bone resorption. Excess R/C leads to OC inhibition which, in our model, also leads to a disturbance in RANK/RANKL homeostasis (see Figure 2). The chain of reactions that arise from pre-existing AIOJ/BMD/FDOJ and BP administration result in the development of BRONJ in response to the subsequent OB depression; it also leads to increased OC apoptosis. In addition, bone densification takes place following BP administration as a result of increased OB activity. As such, osteonecrosis occurs in the jawbone when BPs are used parenterally. The reasons for these different reactions to BPs have not yet been clarified.

Figure 2 The effects of BP administration and the characteristics of AIOJ/BMD/FDOJ both include depressed alkaline phosphatase (AP) activity with subsequent R/C overexpression. On the one hand, this leads to OC inhibition and, on the other, to RANK/RANKL deactivation, which subsequently causes increased OC apoptosis and depressed OB activity resulting in BRONJ development. Legend: The red arrows indicate deactivation; the green arrows show a reversal of the effect following BP administration.

The first step in tumor necrosis factor alpha (TNF-a)-induced OC genesis occurs in the bone marrow.58 Although mature OCs erode the resorption of the bone as a focal point over the course of months to years, the lifespan of individual OCs is only a few weeks. Thus, mature OCs must be constantly replaced. With respect to OC formation, TNF-a directly stimulates the formation of mature OCs,59,60 and supports and promotes the survival of mature OCs.61 TNF-a increases the survival time of OCs to extend the duration of bone resorption. In the early stages of AIOJ/BMD/FDOJ, the situation for OCs is highly contradictory: the extremely low TNF-a values found in areas of AIOJ/BMD/FDOJ as compared to the values in healthy jawbone samples (as documented in our previous studies) indicate that any inflammatory erosion due to TNF-a supported OC formation is unlikely. Due to reduced TNF-a activation, OC formation in AIOJ/BMD/FDOJ is inhibited, which results in a fatty-degenerative morphology.62

In the same way, BPs inhibit the ability of OCs to resorb bone. They do so by suppressing farnesyl diphosphate synthetase activity, which inhibits OC recruitment and impacts the life expectancy of OCs through increased apoptosis. Where the OC function is excessively inhibited, dying OCs will not be replaced, and the capillary network of the bone will not be maintained, which leads to BRONJ.19 The ability of BPs to regulate bone turnover by suppressing OC activity has led to its widespread use in the treatment of osteoporosis, Pagets disease, humoral hypercalcemia, and in tumors metastasizing to bone.17,63 Several studies have shown the effectiveness of BPs in suppressing OC activity in arthritic bone erosions, which was comparable to the effects of OPG injections.64

The initial alkaline phosphatase (AP) situation in AIOJ/BMD/FDOJ is as follows: AP has an optimum pH in the alkaline range. The pH level of AIOJ/BMD/FDOJ areas, however, is reduced as a consequence of the proinflammatory characteristics of R/C overexpression, resulting in a chronic inflammatory state. AP activity is thus inhibited within the increasingly acidic environment of such areas. Furthermore, BPs increase R/C secretion from OBs, and the acidity of areas affected by AIOJ/BMD/FDOJ, together with an excess of R/C, leads to OC inhibition.65 At the same time, there is also reduced osteogenesis due to the suppression of AP activity,66 as well as the overexpression of R/C that is present in AIOJ/BMD/FDOJ areas and also caused by BP administration. In our model, these two factors led to OC inhibition via disturbed RANK//RANKL homeostasis. In addition, depressed OB activity and increased OC apoptosis result in BRONJ development. While the skeletal bone consolidation that results from BP administration occurs in response to increased OB activity, BRONJ develops in the jawbone when BP is administered parenterally. The reasons for these different responses to BPs have not yet been clarified. If we apply these considerations to an existing AIOJ/BMD/FDOJ area (as shown in Figure 2), then BRONJ and AIOJ/BMD/FDOJ both show suppressed AP activity with subsequent R/C overexpression.67 This leads to OC inhibition and RANK/RANKL deactivation and, subsequently, increased OC apoptosis. Decreased OB activity may ultimately lead to the development of exposed BRONJ.

Despite the similarities detailed in the section titled Osteoimmunological parameters of AIOJ/BMD/FDOJ and BRONJ with the same impact in response to BPs, BRONJ and AIOJ/BMD/FDOJ present two very different clinical pictures; different reactions to BP administration are also likely to occur.

The initial involvement of RANKL in AIOJ/BMD/FDOJ has been described in the literature as follows: pathological increases in levels of R/C and MCP-3 from activated OBs stimulate chemotactic recruitment and RANKL formation of resorptive OCs and aggravate local osteolysis. However, BP administration indirectly inhibits OC maturation by increasing OPG protein secretion and decreases transmembrane RANKL expression in human OBs. Several studies have shown that although BPs do not significantly affect RANKL gene expression, they reduce transmembrane RANKL protein expression in OBs.68,69 This shows that BPs, in addition to directly inhibiting mature OCs, prevent OC recruitment and differentiation by splitting transmembrane RANKL into OBs. OC activation and RANKL activation in areas of AIOJ/BMD/FDOJ, and OC inhibition and RANKL inhibition in BRONJ distinguish these two forms of derailed bone metabolism and thus yield different clinical results. Specifically, imperceptible fatty osteolysis of the marrow structures in AIOJ/BMD/FDOJ and painful BRONJ sequestrum arise as a result. BPs have been shown to downregulate the expression of RANKL, the OC-differentiating factor produced by OBs.70

The initial involvement of OPG in AIOJ/BMD/FDOJ is described in the literature. Since the TNF-a level found in AIOJ/BMD/FDOJ represents only 50% of the TNF-a level in healthy jawbone,36,37 the OPG enzyme that belongs to the TNF family is deactivated. In the resulting osteolysis found in areas of AIOJ/BMD/FDOJ, this leads to reduced RANKL binding and thus results in OC activation. In conclusion, data from previously published studies have suggested that BPs modulate the production of OPG by normal OBs, which may contribute to the inhibition of OC bone resorption.71 As the production of OPG increases with OB maturation, the amplification of OPG by BPs may be linked to OB differentiation via stimulatory BP effects. BPs have been shown to increase the gene expression for the decoy receptor, OPG, in human OBs.71 OPG balance is disturbed in both AIOJ/BMD/FDOJ and BRONJ, albeit in opposite ways. However, the prior imbalance of OPG activity in AIOJ/BMD/FDOJ may increase the effects associated with BP administration.

With respect to the exposed variant of BRONJ, radiographic procedures are required in order to determine the extent to which the degree of ossification has increased.72 However, the existence of this variant of BRONJ is clinically evident. In contrast, the non-exposed BRONJ variant and AIOJ/BMD/FDOJ are associated with very similar problems in terms of diagnostic imaging. As with AIOJ/BMD/FDOJ, the prevalence of this variant of BRONJ is largely underestimated as the disease is often underdiagnosed and under-reported.73 Studies have shown that almost a quarter of patients with BRONJ remain undiagnosed.74

The initial histopathological presentation of AIOJ/BMD/FDOJ found in the literature is as follows: Bouquot describes these bone modeling disorders as ischemic osteonecrosis, which is a bone disease characterized by the degeneration and death of marrow and bone due to a slow or abrupt decrease in marrow blood flow.75 Clumps of coalesced, liquefied fat (oil cysts) may be seen. Bone death is represented by a focal loss of OCs. Dark masses of calcific necrotic detritus may often be present.75 The histopathological features of AIOJ/BMD/FDOJ include necrotic adipocytes and fibrosis, but an almost complete absence of inflammatory cells.76 Additional research has shown the role of aseptic necrosis following injury or drug therapy in the pathophysiology of BRONJ. Aseptic bone necrosis, as found in AIOJ/BMD/FDOJ, has been reported as a manifestation of selected systemic diseases and also documented following operations, trauma, and immunosuppressive therapy at the site of BRONJ.77,78 The development of aseptic necrosis has been documented in the upper and lower jaw, particularly following osteotomies.79,80 Researchers have observed a relationship between oral BP use and non-specific aseptic osteonecrosis among a cohort of older cardiovascular patients.81 Other researchers have identified necrotic liquefaction, which often extend to large areas of the jaw, especially within BRONJ lesions of cancer patients, as shown using digital volume tomography (DVT)/cone beam computed tomography (CBCT).82 Research has been published on BRONJ samples that were characterized by low to moderate inflammation.83 This is in accordance with other reports of histopathological analyses of BRONJ samples.48,78,8486 Bone samples from BRONJ patients were investigated by microscopy and the presence of inflammatory infiltrates in the bone tissues was not observed.87 These studies have demonstrated that aseptic necrosis, a lack of inflammatory reactions, and empty OC lacunae are common histopathological features of AIOJ/BMD/FDOJ and BRONJ.

The diagnostic difficulties associated with BRONJ and AIOJ/BMD/FDOJ present another common feature. In order to diagnose BRONJ with imaging procedures, the Task Force Report of the American Society for Bone and Mineral Research highlights that the differential diagnosis of BRONJ should exclude other common intraoral diseases such as periodontitis, gingivitis, infectious osteomyelitis, osteoradionecrosis, neuralgia-inducing cavitational osteonecrosis (NICO), bone tumors, and metastases.15 The authors of the report thus rule out an etiological equation for diagnosing NICO and BRONJ. The current review is focused on the potential role of imaging techniques in the diagnosis of the early stages of BRONJ. A combination of clinical and radiological symptoms suggest that, while not specific to BRONJ, they may collectively be more comprehensive and representative of the bone disease process.2 The American Association of Maxillofacial Surgery accepts the use of imaging techniques when detecting BRONJ during presurgical evaluation.72 It is important for the BRONJ patient that various imaging methods be examined critically prior to being adopted for the early detection and diagnosis of BRONJ.

Figure 3 Left panel shows jawbone area 18; hematoxylin and eosin staining, magnification 200. The lower half of the image illustrates eosinophilic bone substance with empty osteocyte cavities corresponding to devitalized bone sequestrum. Middle part of the left panel: Highly irregular trabecular surfaces with a wide edging comprised of Actinomyces colonies surrounded by a wall of leukocytes. Upper part of left panel: Fibrin particles and individual lymphocytes. Right panel: Actinomyces granules visualized in a PAS reaction; the red color represents a broad band of granules in the middle. The lower edge of the right panel images once again shows a bone sequestrum and typically empty osteocyte lacunae. Diagnosis: Aseptic bone necrosis with Actinomyces colonization.

The histopathological changes in necrotic bone may be visualized with MRI scans, as with CBCT/DVT. The images detect progressive cell death and the repair response (ie, edema). As the fat cells in normal bone marrow provide high signal intensity, it may be assumed that signal changes evident in the marrow are related to the death of fat cells. Necrotic adipocytes are a morphological characteristic of AIOJ/BMD/FDOJ.76 Following the application of a contrast agent, areas of ischemia may be identified as non-enhancing regions. Cases in which fibrosis and sclerosis of the bone occur may also result in lower signal intensity. Nevertheless, the currently available data on MRI results for BRONJ are limited,96 as are those related to AIOJ/BMD/FDOJ. Studies showed positron-emission tomography (PET) as a sensitive method for diagnosis of BRONJ. Thus, PET could be useful for evaluating the severity of BRONJ.97

2D-OPG is used to identify osteopathies of the jawbone. However, this imaging technique fails to show AIOJ/BMD/FDJ areas, thus generating false-negative findings. As a result, AIOJ/BMD/FDOJ have been highly neglected in dentistry and medicine.98 Therefore, transalveolar ultrasound sonography (TAU) appears to be necessary as an additional imaging technique in order to improve the diagnosis of AIOJ/BMD/FDOJ.99,100 A newly developed TAU device (TAU-n) measures sound velocity attenuation when the bone marrow has been penetrated. An ultrasound transmitter is placed over the jaw area and a thumbnail-sized receiver is placed inside the mouth. To obtain reproducible results when measuring bone density, the transmitter and receiver are arranged in a coplanar and fixed position. The parts of the receiving unit are placed inside a patients mouth, the acoustic coupling between those parts and the alveolar ridge is performed with the aid of a semi-solid gel (Figure 3). With the receiver containing 91 piezoelectric fields, sound waves are registered and converted into a color graph of the corresponding areas of bone density (Figure 4).On the graphic visualization, green indicates healthy, dense, and solid bone, yellow indicates the presence of ischemic metabolism, and orange and red highlight areas of AIOJ/BMD/FDOJ presence.101

Figure 4 Left panel shows positioning of transmitter (outside) and receiver (enoral) in the lower jaw; the red band marks the cheek. Right panel shows the transmitter (in blue at the right) and receiver (in green at the left) in a fixed coplanar position (blue bar connecting the transmitter and receiver); semi-solid gel pads between the transmitter and the cheek on the outside of the mouth and between receiver and the alveolar ridge in the enoral position; trans-alveolar ultrasonic impulse from the transmitter to receiver (arrows in blue).

Figure 5 Inconspicuous 2D-OPG findings (left panel); suspected osteolytic processes in areas 1719 in the sagittal section of the image using DVT (right panel). Lower panel: TAU measurement from region 17 to retromolar region 19. Legend: Green areas indicate normal bone density; yellow, orange, and red areas show decreasing bone density until complete osteolysis is reached.

A clinical case of a 55-year-old patient with prostate carcinoma who was treated with parenteral BPs received an X-ray diagnosis of non-exposed BRONJ with normal intraoral findings in the right upper jawbone from area 17 to retromolar area 19. While 2D-OPG of area 18/19 showed no suspicious findings, the CBCT/DVT image demonstrated ossification irregularities and partial cavities that resembled AIOJ/BMD/FDOJ. The development and progression of BRONJ could not be reliably determined by reference to these images and it was not possible to make a differential diagnosis. In contrast, TAU-n images clearly indicated osteolysis (see Figure 4, below). The postoperative light microscopy findings from area 18/19 showed marrow with adipose tissue, significant fibrillar and myxoid degeneration of adipocytes, individual lymphocytes, and mast cells; however, no florid inflammation was observed. These are the typical histological features of AIOJ/BMD/FDOJ.76 It is worth noting, however, that there was a large bone sequestrum with empty OC cavities, highly irregular trabecular surfaces, and empty marrow spaces, with Actinomyces colonization (Figure 3).

Several reviews have indicated that light microscopy examinations were able to detect that 68.8% of BRONJ cases featured Actinomyces colonization.32 Anaerobic Actinomyces has long been associated with necrotic bone findings in BRONJ lesions.102 Actinomyces colonization is thus a top priority as a possible pathological trigger with respect to BRONJ. Since we have not identified bacterial colonization in areas of AIOJ/BMD/FDOJ in our own studies,103 an accompanying secondary Actinomyces colonization seems to be an additional prerequisite for the development of BRONJ from an area of AIOJ/BMD/FDOJ in response to BP administration.

Table 1 displays all studies and their impact on the research question based on the inclusion and exclusion criteria in literature review.

Table 1 The Table Displays the Criteria for Inclusion of Specific Manuscripts in Our Research. Exclusion Criteria Were Unspecific Reviews Concentrating on Exposed BRONJ Only

Can hitherto little-known, yet according to our clinical experience37,76 epidemiologically widespread AIOJ/BMD/FDOJ represent cofactors in the development of BRONJ? The development of biological processes takes place in different stages and during various phases of transition. This also seems to be the case for BRONJ, as the exposed form found in the maxillofacial region represents the final, late-stage form of the NE-BRONJ variant. The focus of our study is thus on the early stage of BRONJ (Stage 0) without exposed bone, as based on the recommendations of the American Association of Oral and Maxillofacial Surgeons.5,20,104 Our hypothesis considers the NE-BRONJ variant as one stage of development featuring an unrecognized BMD that is characteristic of AIOJ/BMD/FDOJ and amplified by BP administration. The cumulative effects of BPs on pre-existing AIOJ/BMD/FDOJ support this premise. The relationship between AIOJ/BMD/FDOJ and the administration of BPs (as shown in Figure 6) leads, etiologically, to the non-exposed BRONJ variant, which is less clearly described in the literature than the late-stage form of BRONJ, and also results in considerable oral impairment.

Figure 6 Overview of the individual osteoimmunological signal cascades present in AIOJ/BMD/FDOJ and their conversion or amplification following BP administration, resulting in the development of BRONJ. Legend: A pair of arrows, one red and one green, indicates the reinforcement or, in one instance, the reversal of the typical overexpression or inhibition found in AIOJ/BMD/FDOJ following BP administration.

As BPs and AIOJ/BMD/FDOJ exert the same effects, resulting in the hyperfunctioning of R/C expression, OB activity, hypoxia/ischemia, and the inhibition of OC activity, vascularization, and AP activity, AIOJ/BMD/FDOJ may be regarded as a prerequisite to the formation of BRONJ. Changes in silent AIOJ/BMD/FDOJ processes, including strongly inhibited OC production, reduced RANKL activity, and increased OPG activity, appear to induce the occurrence of BRONJ. Figure 7 presents a hypothetical three-step model detailing the basic stages for the development of BRONJ at AIOJ/BMD/FDOJ areas. Regions with fatty-degenerative changes may be the focal point for the subsequent development of BRONJ, as such changes may constitute an additional risk factor. This is consistent with the hypothesis described in the literature, whereby bone necrosis precedes clinically evident ONJ that is exposed through the oral mucosa.78,105 Regions featuring subclinical changes and necrotic bone may represent significant risk factors in the development of BRONJ.104 Further, it is known that patients at each stage exhibit a very different bone composition.104

Figure 7 Three-step model for the development of BRONJ beginning with undetected AIOJ/BMD/FDOJ followed by the development of the NE-BRONJ variant, and finally by BRONJ.Notes: Exposed bone BNOJ (left panel). Bony sequestrum BRONJ (right panel). Figure courtesy of Professor J Bouquot.

The prevention of BRONJ is of paramount importance and has been repeatedly emphasized.106108 Thus, BPs should not be regarded as the sole cause of osteonecrosis. The results of this study indicate that unresolved areas of wound healing at extraction sites especially in former wisdom tooth areas may directly contribute to the pathogenesis of BRONJ. Other research has already described the involvement of the jaw in BRONJ as opposed to other bone sites.109 This may be because BPs are preferentially deposited in bones with high turnover rates such as the jawbone. The jawbone also presents with hidden conditions that according to our hypothesis share common characteristics with those found in AIOJ/BMD/FDOJ. Under the influence of BPs, areas of AIOJ/BMD/FDOJ may develop the pathological features of BRONJ. Efforts to prevent BRONJ, therefore, should not ignore the fact that BRONJ and AIOJ/BMD/FDOJ share similar osteoimmunological characteristics with respect to amplifying or reversing derailed signal cascades. Since AIOJ/BMD/FDOJ represent chronic, subclinical states, the sudden formation of BRONJ may be interpreted as a subsequent acute event. The early detection of BRONJ (as well as AIOJ/BMD/FDOJ) using X-ray techniques appears to be difficult. A new risk-benefit analysis should be considered: Patients should be screened for hidden oral risk factors, such as AIOJ/BMD/FDOJ. Thus, TAU may be used to measure bone density and fill this diagnostic gap. When parenteral BP therapy is administered, periodontal prophylaxis and tooth restoration should take precedence;110,111 furthermore, AIOJ/BMD/FDOJ should be diagnosed first, preferably (and accurately) with TAU-n, and then surgically eliminated. The formation of difficult-to-treat BRONJ could be avoided in certain cases if the exacerbation of pre-existing areas of AIOJ/BMD/FDOJ is prevented before initiating anti-tumorigenic BP therapy. Surgical opening of the cortex, removal of ischemic marrow, and accompanying wound care represent the only way to address cases of AIOJ/BMD/FDOJ.112 Consultation with an oncologist is mandatory, as the oncologist may insist on radiation therapy and the prevention of osteoradionecrosis of the jawbones via tooth restoration. To the best of our knowledge, we have highlighted, for the first time, the possible impact chains flowing from AIOJ/BMD/FDOJ and leading to the development of NE-BRONJ and further to exposed BRONJ. We also support the hypothesis presented herein with scientific data from the available literature. Due to the lack of clinical studies investigating these impact chains, multiple studies are necessary to elucidate the hypothesized relationships.

AIOJ, aseptic-ischemic osteonecrosis of the jawbone; BMD, bone marrow defects; BRONJ, bisphosphonate (BP)-related osteonecrosis of the jaw; CBCT, cone beam computed tomography; CCL5, chemokine (C-C motif) ligand 5; DVT, digital volume tomography; FDOJ, fatty-degenerative osteonecrosis/osteolysis of the jawbone; HU, hounsfield units; OPG, orthopantomogram; R/C, RANTES/CCL5; RANTES, regulated on activation, normal T cell expressed and secreted; TAU, transalveolar ultrasonography; TAU-n, new transalveolar ultrasonography device.

Hereby we confirm that written informed consent has been provided by the patient to have the case details and any accompanying images published. The data were collected as part of the normal everyday medical care of the patients and evaluated retrospectively. Institutional approval was not required to publish the case details.

English language editing of this manuscript was provided by Journal Prep Services. Additional English language editing was provided by Natasha Gabriel.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

The corresponding author, Johann Lechner, is the holder of a patent used in the TAU-n apparatus and its associated software and reports a patent CaviTAU licensed to Dr. Johann Lechner. Bernd Zimmermann is an employee of QINNO. The authors report no other potential conflicts of interest for this work.

1. Ruggiero SL, Dodson TB, Fantasia J, et al. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw2014 update. J Oral Maxillofacial Surg. 2014;72:19381956. doi:10.1016/j.joms.2014.04.031.

2. Khan A, Sandor G, Dore E, et al. Canadian consensus practice guidelines for bisphosphonate associated osteonecrosis of the jaw. J Rheumatol. 2008;35:13911397.

3. Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofacial Surg. 2003;61:11151117. doi:10.1016/S0278-2391(03)00720-1.

4. Rosenberg T, Ruggiero S. Osteonecrosis of the jaws associated with the use of bisphosphonates. J Oral Maxillofac Surg. 2003;61:60. doi:10.1016/S0278-2391(03)00566-4

5. Wang J, Goodger NM, Pogrel MA. Osteonecrosis of the jaws associated with cancer chemotherapy. J Oral Maxillofacial Surg. 2003;61:11041107. doi:10.1016/S0278-2391(03)00328-8.

6. van Dessel J, Ferreira Pinheiro Nicolielo L, Huang Y, et al. Quantification of bone quality using different cone-beam CT devices: accuracy assessment for edentulous human mandibles. Eur J Oral Implantol. 2016;9:411424.

7. Imada T, van Dessel J, Rubira-Bullen I, Santos P. Long-term effects of zoledronic acid on alveolar bone remodeling and quality in the jaw of an oncological rat model. Dent Craniofacial Res. 2018;1.

8. Marx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofacial Surg. 2005;63:15671575. doi:10.1016/j.joms.2005.07.010.

9. Palomo L, Bissada N, Liu J. Bisphosphonate therapy for bone loss in patients with osteoporosis and periodontal disease: clinical perspectives and review of the literature. Quintessence Int. 2006;37:103107.

10. Vahtsevanos K, Kyrgidis A, Verrou E, et al. Longitudinal cohort study of risk factors in cancer patients of bisphosphonate-related osteonecrosis of the jaw. J Clin Oncol. 2009;27:53565362. doi:10.1200/JCO.2009.21.9584.

11. Kyrgidis A, Vahtsevanos K, Koloutsos G, et al. Bisphosphonate-related osteonecrosis of the jaws: a case-control study of risk factors in breast cancer patients. J Clin Oncol. 2008;26:46344638. doi:10.1200/JCO.2008.16.2768.

12. Palaska PK, Cartsos V, Zavras AI. Bisphosphonates and time to osteonecrosis development. Oncologist. 2009;14:11541166. doi:10.1634/theoncologist.2009-0115.

13. Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28:51325139. doi:10.1200/JCO.2010.29.7101.

14. Lipton A, Fizazi K, Stopeck AT, et al. Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, Phase 3 trials. Eur J Cancer. 2012;48:30823092. doi:10.1016/j.ejca.2012.08.002.

15. Khosla S, Burr D, Cauley J, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Min Res. 2007;22:14791491. doi:10.1359/jbmr.0707onj.

16. Khl S, Walter C, Acham S, Pfeffer R, Lambrecht JT. Bisphosphonate-related osteonecrosis of the jaws a review. Oral Oncol. 2012;48:938947. doi:10.1016/j.oraloncology.2012.03.028.

17. Bamias A, Kastritis E, Bamia C, et al. Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol. 2005;23:85808587. doi:10.1200/JCO.2005.02.8670.

18. Mavrokokki T, Cheng A, Stein B, Goss A. Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J Oral Maxillofacial Surg. 2007;65:415423. doi:10.1016/j.joms.2006.10.061.

19. Gutta R, Louis PJ. Bisphosphonates and osteonecrosis of the jaws: science and rationale. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2007;104:186193. doi:10.1016/j.tripleo.2006.12.004.

20. Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE, Mehrotra B. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws2009 update. J Oral Maxillofacial Surg. 2009;67:212. doi:10.1016/j.joms.2009.01.009.

21. Patel S, Choyee S, Uyanne J, et al. Non-exposed bisphosphonate-related osteonecrosis of the jaw: a critical assessment of current definition, staging, and treatment guidelines. Oral Dis. 2012;18:625632. doi:10.1111/j.1601-0825.2012.01911.x.

22. Yarom N, Fedele S, Lazarovici TS, Elad S. Is exposure of the jawbone mandatory for establishing the diagnosis of bisphosphonate-related osteonecrosis of the jaw? J Oral Maxillofacial Surg. 2010;68:705. doi:10.1016/j.joms.2009.07.086.

23. Mignogna MD, Sadile G, Leuci S. Drug-related osteonecrosis of the jaws: Exposure, or not exposure: that is the question. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113:704705. doi:10.1016/j.oooo.2012.01.004.

24. Junquera L, Gallego L. Nonexposed bisphosphonate-related osteonecrosis of the jaws: another clinical variant? J Oral Maxillofacial Surg. 2008;66:15161517. doi:10.1016/j.joms.2008.02.012.

25. Fedele S, Porter SR, DAiuto F, et al. Nonexposed variant of bisphosphonate-associated osteonecrosis of the jaw: a case series. Am J Med. 2010;123:10601064. doi:10.1016/j.amjmed.2010.04.033.

26. Schiodt M, Reibel J, Oturai P, Kofod T. Comparison of nonexposed and exposed bisphosphonate-induced osteonecrosis of the jaws: a retrospective analysis from the Copenhagen cohort and a proposal for an updated classification system. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117:204213. doi:10.1016/j.oooo.2013.10.010.

27. Gnant M, Mlineritsch B, Stoeger H, et al. Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 62-month follow-up from the ABCSG-12 randomised trial. Lancet Oncol. 2011;12:631641. doi:10.1016/S1470-2045(11)70122-X.

28. Deans RJ, Moseley AB. Mesenchymal stem cells. Exp Hematol. 2000;28:875884. doi:10.1016/S0301-472X(00)00482-3.

29. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557563. doi:10.1038/nature06188.

30. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9:285293. doi:10.1038/nrc2621.

31. Gallo M, de Luca A, Lamura L, Normanno N. Zoledronic acid blocks the interaction between mesenchymal stem cells and breast cancer cells: implications for adjuvant therapy of breast cancer. Ann Oncol. 2012;23:597604. doi:10.1093/annonc/mdr159.

32. Hinson AM, Smith CW, Siegel ER, Stack BC. Is bisphosphonate-related osteonecrosis of the jaw an infection? A histological and microbiological ten-year summary. Int J Dent. 2014;2014:17. doi:10.1155/2014/452737.

33. Wood J, Bonjean K, Ruetz S, et al. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther. 2002;302:10551061. doi:10.1124/jpet.102.035295.

34. Glueck CJ, McMahon RE, Bouquot JE, Triplett D. Exogenous estrogen may exacerbate thrombophilia, impair bone healing and contribute to development of chronic facial pain. CRANIO. 1998;16:143153. doi:10.1080/08869634.1998.11746052.

35. Gonzalez RM, Daly DS, Tan R, Marks JR, Zangar RC. Plasma biomarker profiles differ depending on breast cancer subtype but RANTES is consistently increased. Cancer Epidemiol Biomarkers Prev. 2011;20:15431551. doi:10.1158/1055-9965.EPI-10-1248.

36. Lechner J, von Baehr V. Hyperactivated signaling pathways of chemokine RANTES/CCL5 in osteopathies of jawbone in breast cancer patients-case report and research. Breast Cancer. 2014;8:8996. doi:10.4137/BCBCR.S15119.

37. Lechner J, von Baehr V. Chemokine RANTES/CCL5 as an unknown link between wound healing in the jawbone and systemic disease: is prediction and tailored treatments in the horizon? EPMA J. 2015;6:10. doi:10.1186/s13167-015-0032-4.

38. Lechner J, von Baehr V. RANTES and fibroblast growth factor 2 in jawbone cavitations: triggers for systemic disease? Int J Gen Med. 2013;6:277290. doi:10.2147/IJGM.S43852.

39. Lechner J, von B. RANTES and fibroblast growth factor 2 in jawbone cavitations: triggers for systemic disease? Int J Gen Med. 2013;277. doi:10.2147/IJGM.S43852.

40. Greiner S, Kadow-Romacker A, Lbberstedt M, Schmidmaier G, Wildemann B. The effect of zoledronic acid incorporated in a poly(D,L-lactide) implant coating on osteoblasts in vitro. J Biomed Mater Res A. 2007;80A:769775. doi:10.1002/jbm.a.30950.

41. Troeltzsch M, Kriegelstein S, Messlinger K, Steiner T, Messlinger K, Troeltzsch M. Physiology and pharmacology of nonbisphosphonate drugs implicated in osteonecrosis of the jaw. J Can Dent Assoc. 2012;78:c85.

42. Krger TB, Herlofson BB, Landin MA, Reseland JE. Alendronate alters osteoblast activities. Acta Odontol Scand. 2016;74:550557. doi:10.1080/00016357.2016.1217041.

43. Bouquot J, McMahon R The histopathology of chronic ischemic bone disease (ON) parameters and disease classification. Tucson, Arizona: Proceedings of the Annual Meeting of the American Association of Oral & Maxillofacial Pathology; 2010.

44. Assael LA. New foundations in understanding osteonecrosis of the jaws. J Oral Maxillofacial Surg. 2004;62:125126. doi:10.1016/j.joms.2003.11.009.

45. Kenzora J, Glimcher M. Accumulative cell stress: the multifactorial etiology of idiopathic osteonecrosis. Orthop Clin North Am. 1985;16:669679.

46. Schoutens A, Arlet J, Gardeniers J, Hughes S, editors. Bone Circulation and Vascularization in Normal and Pathological Conditions. New York, NY: Plenum Press; 1993.

47. Arlet J, Mazieres B. Bone Circulation and Bone Necrosis. Heidelberg, Germany: Springer-Verlag; 1990.

48. Favia G, Pilolli GP, Maiorano E. Histologic and histomorphometric features of bisphosphonate-related osteonecrosis of the jaws: an analysis of 31 cases with confocal laser scanning microscopy. Bone. 2009;45:406413. doi:10.1016/j.bone.2009.05.008.

49. Paparella ML, Brandizzi D, Santini-Araujo E, Cabrini RL. Histopathological features of osteonecrosis of the jaw associated with bisphosphonates. Histopathology. 2012;60:514516. doi:10.1111/j.1365-2559.2011.04061.x.

50. Gruppo R, Glueck CJ, Mcmahon RE, et al. The pathophysiology of alveolar osteonecrosis of the jaw: anticardiolipin antibodies, thrombophilia, and hypofibrinolysis. J Lab Clin Med. 1996;127:481488. doi:10.1016/S0022-2143(96)90065-7.

51. Glueck CJ, McMahon RE, Bouquot J, et al. Thrombophilia, hypofibrinolysis, and alveolar osteonecrosis of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 1996;81:557566. doi:10.1016/S1079-2104(96)80047-3.

52. Glueck C, Freiberg R, Gruppo R. Osteonecrosis: Etiology, Diagnosis, and Treatment. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1997.

53. Gabriel H, Fitzgerald SW, Myers MT, Donaldson JS, Poznanski AK. MR imaging of hip disorders. RadioGraphics. 1994;14:763781. doi:10.1148/radiographics.14.4.7938767.

54. Votta BJ, White JR, Dodds RA, et al. CKbeta-8 [CCL23], a novel CC chemokine, is chemotactic for human osteoclast precursors and is expressed in bone tissues. J Cell Physiol. 2000;183:196207. doi:10.1002/(SICI)1097-4652(200005)183:2<96::aid-jcp6>3.0.CO;2-8.

55. Lisignoli G, Toneguzzi S, Grassi F, et al. Different chemokines are expressed in human arthritic bone biopsies: IFN- and IL-6 differently modulate IL-8, MCP-1 AND RANTES production by arthritic osteoblasts. Cytokine. 2002;20:231238. doi:10.1006/cyto.2002.2006.

56. Pozzi S, Vallet S, Mukherjee S, et al. High-dose zoledronic acid impacts bone remodeling with effects on osteoblastic lineage and bone mechanical properties. Clin Cancer Res. 2009;15:58295839. doi:10.1158/1078-0432.CCR-09-0426.

57. Kamalakar A, Bendre MS, Washam CL, et al. Circulating interleukin-8 levels explain breast cancer osteolysis in mice and humans. Bone. 2014;61:176185. doi:10.1016/j.bone.2014.01.015.

See the article here:
[Full text] Osteonecrosis of the Jaw Beyond Bisphosphonates: Are There Any Unknown | CCIDE - Dove Medical Press

Delta just offered a brave lesson in listening to customers, not tech – ZDNet

Zoom will change nothing?

The tech industry always knows how the future will be.

Why, it's creating it, so it's got something of an inside track at the bookies.

Not everyone, however, is convinced about Techworld's slightly smug infallibility.

On Thursday, Delta emailed me to announce it had lost the GDP of a small, robust country. $12.4 billion.

Certainly, the coronavirus has wrecked airlines' ability to do much but get many free billions from the government. Working from home seems to be the new permanent way for many people.

You might think, then, that the analysts' call to herald such an announcement would be grim, brutal, and swift. Instead, Delta's executives looked into the future and insisted the tech industry has got it all wrong.

For many months, wise tech lords like SoftBank's Masayoshi Son and Melinda's Bill Gates have claimed that business travel will never be what it once was. Why, Zooming and Teamsing have made flying unnecessary, haven't they?

Not so long ago, Natarajan Chandrasekaran, chairman of Indian conglomerate Tata Sons, claimed he'd done $2 billion worth of deals in just five or six Zoom calls.

Yet here were Delta's executives insisting this was all hocus diluted with overripe pocus.

As The Points Guy reported, Delta CEO Ed Bastian mused: "I wouldn't draw the conclusion that corporate travel is impaired at all."

At all? In any way? Not even in 12.4 billion ways?

Bastian and the airline's president Glen Hauenstein insist they have corporate travelers just where they want them. They believe vaccines will make an enormous difference.

Hauenstein also said the airline's determined decision to block middle seats -- amid considerable controversy as to whether filling middle seats increases the risk of getting the virus -- enhanced its image with corporate travelers. He said revenue premiums have never been as exalted.

"Customers value the Delta difference (including) the least amount of sellable capacity," he said.

Scarcity sells. Instinctively, every flyer prefers having an empty seat next to them. Unless it was supposed to be occupied by a lover who didn't turn up.

I still wonder whether Delta is entirely correct. Travel executives at tech companies have told me that they -- and, more delightfully, their bosses -- instantly see the savings that better video conferencing has brought.

Why would companies ever, some insist, revert to spending so much money on travel?

The CEOs of American Airlines and United believe nothing -- and certainly not the likes of Zoom -- can replace the face-to-face needs of business. Those needs, however, have surely undergone something of a modification in the last nine months.

I can believe that Delta has done its research. I can believe its corporate customers are telling it nice things. But as Teams and Zoom -- and even Webex -- accelerate the joys of their offerings, I'm not so convinced there'll be a swift -- or complete -- return to corporate flying.

Delta's research is based on its business customers saying what they're going to do in the future. 40% say they'll be back to normal flying by 2022. I don't even know how I'm going to behave next week.

Moreover, the tech industry has a creepily effective way of altering habits we thought would last forever. Remember owning music? It's also very good at creating entirely new cost parameters that CFOs quite adore. Last October, Amazon said it had already saved $1 billion on corporate travel.

Then again, I do believe there'll soon be enormous enthusiasm for getting away from it all to anywhere sunny that'll let us in. Just so we can breathe quietly and forget 2020.

Wouldn't it be a beautiful twist of fortune if, in the near future, companies worked far harder at getting their employees to fly away and relax with their loved ones, rather than to eat steak and drink whiskey with someone they don't even like?

Read more:
Delta just offered a brave lesson in listening to customers, not tech - ZDNet

Creative Medical Technology Holdings Files Investigational New Drug Application (IND) with FDA for Treatment of Stroke using ImmCelz Regenerative…

TipRanks

Risk and reward often travel hand-in-hand, making the stock market both lucrative and dangerous. Among the best exemplars of this axiom are the penny stocks, those equities priced at $5 or less. With that low price comes the potential for extreme gains, as even an incrementally small price increase will translate to a high percentage gain.JPMorgan's Head of Small and Midcap Equity Strategy, Eduardo Lecubarri, sees both the opportunities and dangers in the current market environment and the great potential of small-cap stocks that have room to run.1Q may be rocky following the strong gains since Nov and the fact that valuations are sitting on all-time highs. However, the year long outlook is encouraging due to far more powerful fundamental tailwinds. Such a positive backdrop is likely to keep investors chasing those few stocks that still offer big recovery upside, as they seem to have started to do YTD. It is for this reason that we would encourage investors to build their portfolios now and see things through in the event of any consolidation phase that may come in Q1, Lecubarri wrote.Taking the risk into consideration, we used TipRanks database to find compelling penny stocks with bargain price tags. The platform steered us towards two tickers sporting Strong Buy consensus ratings from the analyst community. Not to mention substantial upside potential is on the table. We are talking returns of at least 300% over the next 12 months, according to the analysts.AcelRx Pharmaceuticals (ACRX)Opioids have made headlines in recent years, and for all the wrong reasons. These potent pain relief drugs are also dangerously addictive a factor that has led to the opioid epidemic in the US. AcelRx is a pharmaceutical company dedicated to the creation of safer treatments for acute pain, developing synthetic opioid drugs for sublingual (under the tongue) dosing.The companys main product, Sufentanil, was approved by the FDA under the name Dsuvia in 2018, and by the EU as Dzuveo that same year. A second sublingual Sufentanil system, under the name Zalviso, has also been approved for use by the EU, and is in Phase 3 trial in the US.In its most recent earning report, the company showed $1.4 million at the top line, driven by $1.3 million in product sales. The sales figure was up 433% sequentially, and the total revenue figure was up 133% year-over-year.Against this backdrop, several members of the Street believe ACRXs $1.40 share price looks like a steal.Cantor analyst Brandon Folkes is upbeat on Dsuvias prospects as an alternative to current opioid treatments, and he believes that potential will boost the companys stock.With the launch of Dsuvia, we believe investor focus can now shift to launch metrics and peak sales potential for the product. As ACRX launches a true alternative to IV opioids, we expect investors to begin to appreciate the value of the product. We believe that Dsuvia offers an advancement in delivery of adequate pain treatment by eliminating the need for an invasive and time-consuming IV set-up in the emergency room, as well as an outpatient, or post-surgery, setting. Despite hospital launches taking time, we expect the uptake of Dsuvia to drive revenue upside beyond the Street's current estimates, which, in turn, could drive the stock higher from current levels, Follked opined.In line with his bullish stance, Folkes rates ACRX a Buy, and his $9 price target implies room for a stunning 552% upside potential in the next 12 months. (To watch Folkes track record, click here)Turning now to the rest of the Street, 3 Buys and no Holds or Sells have been published in the last three months. Therefore, ACRX has a Strong Buy consensus rating. Based on the $7 average price target, shares could soar 407% in the next year. (See ACRX stock analysis on TipRanks)NuCana (NCNA)NuCana is a biopharma company focused on new cancer treatments. The companys goal is to provide effective treatments for biliary, breast, colorectal, ovarian, and pancreatic cancers while avoiding the complications and side effects of current chemotherapy treatments. NuCana uses a phosphoramidate chemistry technology called ProTide to create a class of drugs that will surmount the limitations of the existing nucleotide analogs behind many chemotherapy drugs. NuCanas ProTides have already been used in Gileads antiviral drug Sovaldi.In May of last year, NuCana announced the restart of its Phase III trial on Acelarin, the drug candidate furthest along the companys pipeline, as a treatment for biliary tract cancers. The study encompasses over 800 patients in 6 countries and is currently ongoing. In November, the company published data described as encouraging from the Phase Ib study of the same drug.While Acelarin is the flagship drug in the pipeline, NuCana has two other prospects under development. NUC-3373 is in Phase I trial as a treatment for solid tumors and colorectal cancers, and NUC-7738 is a second pathway under investigation for applications to advanced solid tumors. Of these three, the colorectal study is the farthest advanced.Writing from Truist, 5-star analyst Robyn Karnauskas sees the pipeline as key to NuCanas investor potential.We believe investors have overlooked the fact that NCNA is a platform Company that we believe is validated, as defined by the production of clinical products. We like that it has brought 3 products to the clinic, including one novel drug and two improved cornerstone chemos. The data suggest to us that the platform works and can produce better chemos [] While investors are mostly focused on Acelarin, we believe investors should also focus on NUC-3373, another core to our platform-based thesis that has data expected in 1H2021, Karnauskas noted.To this end, Karnauskas puts a $22 price target on NCNA, suggesting the stock has room for 384% growth ahead of it, along with a Buy rating. (To watch Karnauskas track record, click here)Overall, NCNA's Strong Buy consensus rating is unanimous, and based on 4 recent reviews. Shares have an average price target of $17.33, suggesting a 270% one-year upside from the current trading price of $4.69. (See NCNA stock analysis on TipRanks)To find good ideas for penny stocks trading at attractive valuations, visit TipRanks Best Stocks to Buy, a newly launched tool that unites all of TipRanks equity insights.Disclaimer: The opinions expressed in this article are solely those of the featured analysts. The content is intended to be used for informational purposes only. It is very important to do your own analysis before making any investment.

Read more here:
Creative Medical Technology Holdings Files Investigational New Drug Application (IND) with FDA for Treatment of Stroke using ImmCelz Regenerative...

Six tips for looking after your new puppy, according to science – The Conversation UK

Puppies have the potential to bring enormous benefits to their owners lives and can be an asset during uncertain times, including lockdown. That said, caring for a young animal is not without its challenges. With more than one in four puppy buyers during the pandemic admitting it was an impulse decision, there are genuine concerns for the future of the animals taken on during this time.

The success of a long-term dog-owner relationship depends on building a good foundation. Here are six things every owner needs to know about looking after a puppy and developing a long-lasting relationship with their new best friend.

While many new owners romanticise the idea of taking long walks with a frolicking puppy, the reality is young dogs, especially larger breeds, should not be allowed too much exercise. Puppies have a lot of energy, but their bones, joints and growth plates are soft and can be easily damaged.

Too much exercise is almost as harmful as not enough. Over-activity at the wrong age leads to health problems including hip dysplasia, growth deformation and movement disorders.

There is no exact science on the optimum amount of time puppies should be walked for. However, a general rule of thumb is five minutes per month of age, twice a day. By this logic, a 16-week-old puppy would need a daily total of only 40 minutes exercise.

Vaccinating your puppy is one of the most important things to be done in the first few weeks as a new owner. Vaccinations can protect dogs from a wide variety of potentially dangerous pathogens including parvovirus, kennel cough, hepatitis and leptospirosis.

Puppies typically receive their first set of vaccinations around eight to 10 weeks of age, with another set two to three weeks later, although protocols vary. Puppies are not advised to come into contact with un-vaccinated dogs until they are fully protected, so walks in the park are off limits. However, pups can still be carried around the neighbourhood to facilitate socialisation.

Dogs have a number of important stages of development, one being the socialisation period, thought to lie between three and 16 weeks of age. Within this relatively short window of opportunity, puppies need to be exposed to as many different people, animals and situations as possible.

Failure to socialise your puppy can result in a strong fear of these stimuli later in life and, in some cases, the development of resistant behaviour problems. Dogs that are denied contact with children may become overly reactive in their presence, lunging towards them and even attempting to bite.

The importance of putting effort into exposing puppies to the sights, sounds and smells of as many different stimuli and situations as possible cannot be overemphasized. Doing so will allow your dog to navigate life more easily.

Read more: Young dogs might be more similar to human teenagers than we think: new research

Lockdown has resulted in a dramatic increase in the amount of time owners spend with their pets, which could lead to an increase in canine separation anxiety when owners return to work. This problem is believed to stem from an over-attachment between the animal and its caregiver, and one that frequently results in animals being rehomed.

Typical symptoms of this anxiety disorder include urinating or defecating indoors, barking and whining, destruction of the home, escape attempts or self-mutilation whenever the pet is left alone. Separation anxiety is difficult to treat successfully.

It is important to put effort into preventing over-attachment from an early stage, by gradually increasing the length of time the animal spends alone. Various enrichment tools can help the puppy feel relaxed during these periods of separation. Things like pheromone diffusers, classical music or odourants are renowned for their relaxing properties.

While it can be tempting to give your puppy leftovers from the table, there is a long list of foods that can be toxic to dogs. For example, chocolate, especially the dark variety, contains the stimulant theobromine. If ingested, this can damage dogs guts, heart, central nervous system or kidneys, leading to vomiting, diarrhoea, hyperactivity, seizures, and even death.

Onions, garlic and chives, in all forms, can cause damage to dogs red blood cells, eventually leading to anaemia. Xylitol, an artificial sweetener found in foods like sugar free chewing gum, some peanut butters and some sweets, can cause dramatic drops in blood sugar, and, in some cases, liver failure.

The list of other foods that are dangerous to dogs is quite extensive, including, among others, caffeine, alcohol, grapes and raisins. Owners should familiarise themselves with the list of foods that are harmful to dogs and seek immediate veterinary advice in the event of ingestion.

Puppies are notorious for eating anything and everything. Many seem to regard the garden as their own personal larder. Unfortunately, there are numerous botanical hazards that owners need to be aware of.

Certain bulbs, like daffodils, and house plants like poinsettias should be avoided. Seeds and foliage like acorns, ivy and mistletoe can all have a life-threatening impact on dogs. Early signs of toxicosis can include vomiting, diarrhoea and salivation, with more serious effects, such as liver and kidney damage, taking up to two days to manifest themselves. Again, veterinary care must be sought immediately if an owner suspects their puppy has eaten any potentially poisonous plant material.

Being aware of these important tips will help keep your puppy healthy and happy, bringing you a lifetime of joy. Getting a puppy is extremely exciting, but just a little bit of thought and planning will make sure you and your pup get off to the best start possible.

See the original post here:
Six tips for looking after your new puppy, according to science - The Conversation UK

Impact of COVID-19 on Canine Stem Cell Therapy Market 2021 | Size, Growth, Demand, Opportunities & Forecast To 2027 | VETSTEM BIOPHARMA, Cell…

Canine Stem Cell Therapy Market research is an intelligence report with meticulous efforts undertaken to study the right and valuable information. The data which has been looked upon is done considering both, the existing top players and the upcoming competitors. Business strategies of the key players and the new entering market industries are studied in detail. Well explained SWOT analysis, revenue share and contact information are shared in this report analysis.The global Canine Stem Cell Therapy Market size is expected to Expand at Significant CAGR of +4% during forecast period (2020-2026).The non-invasive stem cell obtaining procedure, augmented possibility of accomplishing high quality cells, and lower price of therapy coupled with high success rate of positive outcomes have collectively made allogeneic stem cell therapy a preference for veterinary physicians. Moreover, allogeneic stem cell therapy is 100% safe, which further supports its demand on a global level.

Get Sample Copy of this Report @:

https://www.a2zmarketresearch.com/sample?reportId=21262

Top Companies of this Market includes:

VETSTEM BIOPHARMA, Cell Therapy Sciences, Regeneus, Aratana Therapeutics, Medivet Biologics, Okyanos.

This report provides a detailed and analytical look at the various companies that are working to achieve a high market share in the global Canine Stem Cell Therapy market. Data is provided for the top and fastest growing segments. This report implements a balanced mix of primary and secondary research methodologies for analysis. Markets are categorized according to key criteria. To this end, the report includes a section dedicated to the company profile. This report will help you identify your needs, discover problem areas, discover better opportunities, and help all your organizations primary leadership processes. You can ensure the performance of your public relations efforts and monitor customer objections to stay one step ahead and limit losses.

The report provides insights on the following pointers:

Market Penetration:Comprehensive information on the product portfolios of the top players in the Canine Stem Cell Therapy market.

Product Development/Innovation:Detailed insights on the upcoming technologies, R&D activities, and product launches in the market.

Competitive Assessment: In-depth assessment of the market strategies, geographic and business segments of the leading players in the market.

Market Development:Comprehensive information about emerging markets. This report analyzes the market for various segments across geographies.

Market Diversification:Exhaustive information about new products, untapped geographies, recent developments, and investments in the Canine Stem Cell Therapy market.

Get up to 25% Discount on this Premium Report @:

https://www.a2zmarketresearch.com/discount?reportId=21262

The cost analysis of the Global Canine Stem Cell Therapy Market has been performed while keeping in view manufacturing expenses, labor cost, and raw materials and their market concentration rate, suppliers, and price trend. Other factors such as Supply chain, downstream buyers, and sourcing strategy have been assessed to provide a complete and in-depth view of the market. Buyers of the report will also be exposed to a study on market positioning with factors such as target client, brand strategy, and price strategy taken into consideration.

Global Canine Stem Cell Therapy Market Segmentation:

Market Segmentation by Type:

Allogeneic Stem CellsAutologous Stem cells

Market Segmentation by Application:

Veterinary HospitalsVeterinary ClinicsVeterinary Research Institutes

Reasons for buying this report:

Table of Contents

Global Canine Stem Cell Therapy Market Research Report 2021

Chapter 1 Canine Stem Cell Therapy Market Overview

Chapter 2 Global Economic Impact on Industry

Chapter 3 Global Market Competition by Manufacturers

Chapter 4 Global Production, Revenue (Value) by Region

Chapter 5 Global Supply (Production), Consumption, Export, Import by Regions

Chapter 6 Global Production, Revenue (Value), Price Trend by Type

Chapter 7 Global Market Analysis by Application

Chapter 8 Manufacturing Cost Analysis

Chapter 9 Industrial Chain, Sourcing Strategy and Downstream Buyers

Chapter 10 Marketing Strategy Analysis, Distributors/Traders

Chapter 11 Market Effect Factors Analysis

Chapter 12 Global Canine Stem Cell Therapy Market Forecast

Buy Exclusive Report @:

https://www.a2zmarketresearch.com/buy?reportId=21262

If you have any special requirements, please let us know and we will offer you the report as you want.

https://factorygate.co.uk/

More here:
Impact of COVID-19 on Canine Stem Cell Therapy Market 2021 | Size, Growth, Demand, Opportunities & Forecast To 2027 | VETSTEM BIOPHARMA, Cell...

Canine Stem Cell Therapy Market Report 2026 Focuses on Top Companies, Research Methodology, Drivers and Opportunities – Farming Sector

Global Canine Stem Cell Therapy Market Report available at AllTheResearch provides a roadmap of the Canine Stem Cell Therapy industry which makes up for the scope of product, market revenue cycle, new opportunities, CAGR, sales volumes, and figures. The demand for Canine Stem Cell Therapy is expected to grow significantly as the industry becomes increasingly popular. The two major factors examined in this report include market revenue and market size.

The Canine Stem Cell Therapy market study is an in-depth analysis of this industry that effectively covers all the aspects related to this industry over the projected period and the primary development trends of the market, over the forecast period. This report on the global Canine Stem Cell Therapy market is designed to serve as a ready-to-use guide for developing accurate pandemic management programs allowing market players to successfully emerge from the crisis and retract numerous gains and profits.

TheCanine Stem Cell TherapyMarket size was valued at US$118.5 Mn in 2018and is expected to grow at a compound annual growth rate (CAGR) of 9.3% for the forecast period ending2026reaching a Market value of US$ 240.7 Mn.

Get the PDF Sample Copy (Including FULL TOC, Graphs and Tables) of Canine Stem Cell Therapy market report at:https://www.alltheresearch.com/sample-request/206

Competitive Landscape:

A lot of companies are trying to make the market for the global Canine Stem Cell Therapy prosper with high growth opportunities. These segments are known for extensive participation in taking the market ahead. AllTheResearch recorded their recent steps to gauge in which direction the market is moving and find better growth possibilities there.

The Canine Stem Cell Therapy Market Report Covers Major Players:

Canine Stem Cell Therapy Market Segmentation:

The global market for Canine Stem Cell Therapy is set to find a segmentation in the report that would be based on type, and application. These segments have a better acceptance of various factors that can be taken into consideration to understand how the market can chart the future path.

Canine Stem Cell Therapy Market Breakdown by type

Canine Stem Cell Therapy Market Breakdown by Application

Any query or need customization? Ask here @ https://www.alltheresearch.com/customization/206

Regional Analysis Covered in Canine Stem Cell Therapy Report are:

Key Highlights of the Table of Contents:

Canine Stem Cell Therapy Market Study Coverage: It includes key market segments, key manufacturers covered, the scope of products offered in the years considered, global Canine Stem Cell Therapy Market and study objectives. Additionally, it touches on the segmentation study provided in the report on the basis of the type of product and applications.

Canine Stem Cell Therapy Market Executive summary: This section emphasizes the key studies, market growth rate, competitive landscape, market drivers, trends, and issues in addition to the macroscopic indicators.

Canine Stem Cell Therapy Market Production by Region: The report delivers data related to import and export, revenue, production, and key players of all regional markets studied are covered in this section.

Canine Stem Cell Therapy Market Profile of Manufacturers: Analysis of each market player profiled is detailed in this section. This segment also provides SWOT analysis, products, production, value, capacity, and other vital factors of the individual player.

Enquire More About Canine Stem Cell Therapy Market Research athttps://www.alltheresearch.com/speak-to-analyst/206

In this study, the years considered to estimate the market size of Canine Stem Cell Therapy Market:

History Year: 2015 2020

Base Year: 2020

Estimated Year: 2021

Forecast Year: 2021 2026

Reasons you should buy this report:

To Buy Full Report, Connect with us at:https://www.alltheresearch.com/buy-now/206

About Us

AllTheResearch was formed with the aim of making market research a significant tool for managing breakthroughs in the industry. As a leading market research provider, the firm empowers its global clients with business-critical research solutions. The outcome of our study of numerous companies that rely on market research and consulting data for their decision-making made us realise, that its not just sheer data-points, but the right analysis that creates a difference. While some clients were unhappy with the inconsistencies and inaccuracies of data, others expressed concerns over the experience in dealing with the research-firm. Also, same-data-for-all-business roles was making research redundant. We identified these gaps and built AllTheResearch to raise the standards of research support.

For All Your Research Needs, Reach Out to Us:

Contact Name: Rohan S.

Email: [emailprotected]

Phone: +1 (407) 768-2028

https://farmingsector.co.uk/

Go here to see the original:
Canine Stem Cell Therapy Market Report 2026 Focuses on Top Companies, Research Methodology, Drivers and Opportunities - Farming Sector

Canine Stem Cell Therapy Market with Competitive Analysis, New Business Developments and Top Companies: VETSTEM BIOPHARMA, Cell Therapy Sciences,…

A recent market study published by Reports Monitor consists of a detailed evaluation of the key market dynamics. The report provides past as well as present growth parameters of the global Canine Stem Cell Therapy Market. The report features important and unique factors, which are expected to significantly impact the growth of the global Canine Stem Cell Therapy Market throughout the forecast period 2021-2027.

It sheds light on the trends, restraints, and drivers to understand the growth chance followed by the key players in the global Canine Stem Cell Therapy Market.

Get a Sample PDF Report:https://www.reportsmonitor.com/request_sample/1192862

The Top Leading players operating in the market to Covered in this Report:VETSTEM BIOPHARMA, Cell Therapy Sciences, Regeneus, Aratana Therapeutics, Medivet Biologics, Okyanos, Vetbiologics, VetMatrix, Magellan Stem Cells, ANIMAL CELL THERAPIES, Stemcellvet & More.

The report begin with a scope of the global Canine Stem Cell Therapy Market that includes the key findings and essential statistics of the market. This market research report also consists of the market value of the major segments of the global Canine Stem Cell Therapy Market. Reports Monitor has found a detailed classification and the definition of the global market that helps the readers to better understand the basic information of the Canine Stem Cell Therapy Market. It also highlights the exclusions and inclusions that help the client to understand the scope of the Canine Stem Cell Therapy Market.

Segment by Type, the product can be split intoAllogeneic Stem CellsAutologous Stem cellsMarket segment by Application, split intoVeterinary HospitalsVeterinary ClinicsVeterinary Research Institutes

The report consists of key market trends, which are possible to impact the growth of the market over the forecast period 2021- 2027. Evaluation of in-depth industry trends is included in the report, along with their product innovations and key market growth.

Competitive Landscape:The report provides a list of all the key players in the Canine Stem Cell Therapy Market along with a detailed analysis of the strategies, which the companies are adopting. The strategies mainly include new product development, research, and development, and also provides revenue shares, company overview, and recent company developments to remain competitive in the market.

Regional Analysis For Canine Stem Cell Therapy Market:

North America(United States, Canada, and Mexico)Europe(Germany, France, UK, Russia, and Italy)Asia-Pacific(China, Japan, Korea, India, and Southeast Asia)South America (Brazil, Argentina, Colombia, etc.)Middle East and Africa(Saudi Arabia, UAE, Egypt, Nigeria, and South Africa)

Grab Your Report at an Impressive Discount! Please click [emailprotected]https://www.reportsmonitor.com/check_discount/1192862

In this study, the years considered to estimate the market size of the Canine Stem Cell Therapy are as follows:

What our report offers:

For More Details On this Report:https://www.reportsmonitor.com/report/1192862/Canine-Stem-Cell-Therapy-Market

Contact UsJay MatthewsDirect: +1 513 549-591481 (U.S.)+44 203 318 2846 (U.K.)Email:[emailprotected]

https://mmcthemonitor.com/

Originally posted here:
Canine Stem Cell Therapy Market with Competitive Analysis, New Business Developments and Top Companies: VETSTEM BIOPHARMA, Cell Therapy Sciences,...

New Approaches to the Treatment of Relapsed or Refractory Diffuse Large B-cell Lymphoma – Targeted Oncology

In the United States, the most common of the aggressive non-Hodgkin lymphomas (NHLs) is diffuse large B-cell lymphoma (DLBCL), which accounts for between 22% and 24% of newly diagnosed B-cell NHL cases.1 Although DLBCL can affect children and young adults, it is most commonly diagnosed in individuals between the ages of 65 and 74 years, with a median age at diagnosis of 66 years.2,3 Given the aggressive nature of DLBCL, patients often present with lymphadenopathy, extranodal involvement, and other constitutional symptoms thatrequire immediate treatment.1

The treatment spectrum for DLBCL has expanded significantly in recent years, particularly for patients with relapsed or refractory (R/R) disease. Mechanisms of action differ greatly among agents, reflecting the complex pathophysiology and genetic variations of the disease. This article reviews the advances in DLBCL understanding that have led to the approval of new agents andsubsequent utilization of new mechanisms.

The current standards of care for first-line DLBCL treatment include the combination chemoimmunotherapy regimen of rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and prednisone (R-CHOP). The varying numbers of cycles and use in combination with or without radiotherapy (RT) depends upon the stage of disease at presentation.1 The addition of rituximab to CHOP was associated with a 2-year event-free survival of 57% in elderly patients in a 2002 randomized trial (LNH-98.5), which, along with results of other trials, led to the FDA approval of this combination therapy.4,5 Although durable remission can be achieved with R-CHOP in about 60% of patients, its use has resulted in poorer long-term outcomes for patients with double-hit andtriple-hit lymphomas (DHL and THL).1

In 2007, the International Harmonization Project issued guidelines on malignant lymphoma response criteria, defining relapsed disease as consisting of new lesions greater than 1.5 cm in any axis during or after the completion of therapy or a 50% or greater increase in the sum of the product of diameters of a previously involved node(s) or other lesion(s).6 The authors also defined refractory, or progressive, disease as entailing a 50% or greater increase in the size of a lymph node with a prior short-axis diameter of less than 1.0 cm to a size of 1.5 cm 1.5 cm (or a long-axis size of > 1.5 cm).6

For patients with R/R disease, high-dose chemotherapy and autologous stem cell transplant (ASCT) may offer the chance for cure, but several factors may limit the utility of this approach. For example, in the treatment of patients with MYC-positive R/R DLBCL, ASCT is considered controversial because it has produced poorer outcomes in patients with DHL.1 Additionally, patients who are older or have comorbidities may be inappropriate candidates for this approach,7 and patients with disease that is unresponsive to second-line chemotherapy may have poorer prognoses (ie, poorer rates of long-term survival) and incur added toxicity from the chemotherapy.7 Even when including patients who undergo high-dose, salvage chemotherapy and subsequent ASCT, patients with R/R DLBCL have a 1-year survival rate of 28%.1 Hence, in a search for improved outcomes in the R/R setting, clinical studies have focused on DLBCL subtypes, especially in those ineligible for transplant or who have relapsed following transplant.1

Another option for patients in the relapsed setting is chimeric antigen receptor (CAR) T-cell therapy, which entails the genetic modification of autologous T cells via cloned DNA plasmids carrying a viral recombinant vector in addition to T-cell receptor-expressing genes. CAR T-cell therapy plays an important role in the R/R DLBCL setting, with reported 2-year remissions and a complete response (CR) rate in 40% of patients and 25% DHL/THL patients.1 Other therapeutic classes that have been explored for DLBCL include phosphoinositide 3-kinase (PI3K) inhibitors, B-cell lymphoma 2 (BCL2) inhibitors, and checkpoint inhibitors.1,8-10

Given reduced survival in patients who are unresponsive to subsequent lines of therapy and the toxicity involved, a great need exists for novel agents in the R/R DLBCL setting. Recent entrants to the R/R DLBCL treatment landscape include the antibody-drug conjugate (ADC) polatuzumab vedotin-piiq, the selective inhibitor of nuclear export, selinexor, and the monoclonal antibody tafasitamab-cxix (TABLE 111-20).

Polatuzumab vedotin-piiq was approved by the FDA in 2019 and is indicated in combination with bendamustine and rituximab in adults with RR DLBCL not otherwise specified, following at least 2 previous therapies.11 It is an ADC wherein the monoclonal antibody is linked to an antimitotic agent, monomethyl auristatin E (MMAE). The ADC targets the B-cell surface protein CD79B and, after binding to the surface protein, is internalized by the cell. Lysosomal enzymes then cleave the link between the antibody and MMAE, the latter of which binds microtubules, thereby inhibiting cell division and inducing apoptosis.11

A 2020 phase 1b/2 study (NCT02257567) randomized patients with R/R DLBCL who were ineligible for ASCT to receive polatuzumab vedotin-piiq with bendamustine and rituximab (pola-BR) or bendamustine and rituximab (BR) alone.12 The phase 2 primary end point was CR; secondary end points included overall response rate (ORR) at end of treatment, superior overall response, duration of response (DOR), and progression-free survival (PFS) assessed per independent review committee (IRC).12 With a median follow-up of 22.3 months, the CR was significantly higher in the pola-BR group (40% vs 17.5% in the BR group; P = .026).12 Overall survival rate was also significantly higher in the pola-BR group (12.4 vs 4.7 months in the BR group; HR, 0.42; 95% CI, 0.24-0.75; P = .002).12 Similarly, median PFS was significantly longer at 9.5 months in the pola-BR group compared with 3.7 months in the BR group (HR, 0.36; 95% CI, 0.21-0.63; P < .001).12 Also, DOR was longer at 12.6 months in the pola-BR group vs 7.7 months in the BR group (HR, 0.47; 95% CI, 0.19-1.14).12 Finally, the pola-BR group had a 58% reduction in risk of death compared with the BR group (HR, 0.42; 95% CI, 0.24-0.75; P = .002).12 In terms of safety, grade 3/4 anemia, neutropenia, thrombocytopenia, and peripheral neuropathy occurred more frequently in the pola-BR group than in the BR group.12 Polatuzumab vedotin-piiq was deemed an effective agent that might provide a therapeutic option for patients with R/R DLBCL who were not ideal candidates for CAR T-cell therapy.12

In 2020, selinexor was approved by the FDA for use in adult patients with R/R DLBCL (including follicular lymphoma-derived DLBCL) after at least 2 lines of systemic treatment.13 Selinexor inhibits nuclear export of tumor suppressor proteins by blocking exportin 1.13

The FDA approval was based on results of the open-label single-arm phase 2 SADAL trial (NCT02227251), which included patients 18 years or older with DLBCL (based on pathologic confirmation) with an Eastern Cooperative Oncology Group (ECOG) score of 2 or less, who had 2 to 5 lines of prior therapy, and who had progressed following or were ineligible for ASCT.14 The primary end point of the SADAL trial was ORR (comprising patients with CR or PR per 2014 Lugano criteria), with secondary end points consisting of DOR and disease control rate.14 Patients received the 60-mg oral selinexor on the first and third day of each week until disease progression or unacceptable toxicity occurred.14

The updated phase 2b ORR was 28.3% with a disease control rate of 37% (95% CI, 28.6-46.0). Of 36 responders, CRs were reported in 13 evaluable patients and PRs were reported in 23 patients. At a median follow-up of 11.1 months, the median DOR was 9.3 months (95% CI, 4.8-23.0). For those with a CR, median DOR was 23.0 months (95% CI, 10.4-23.0); median DOR was 4.4 months for those with a PR (95% CI, 2.0not evaluable).14,15 To address potential differences by subtype, the SADAL trial also included a subgroup analysis of patients with the germinal center B-cell (GCB)like subtype (n = 59), which demonstrated an ORR of 33.9%, a 14% CR rate, and a 20% PR rate, whereas the patients with a non-GCB subtype (n = 63) had an ORR of 20.6%. At the time of data cutoff, 7%(n = 9) of patients showed continuing response.14,15 The SADAL trial also included 5 patients with the unclassified subtype, in 1 of whom a CR was achieved and in 2 of whom a PR was achieved.15With respect to safety, 98% of patients in the SADAL trial had at least 1 treatment-emergent adverse event (TEAE). The most frequent grade 3/4 events were thrombocytopenia, neutropenia, anemia, fatigue, hyponatremia, and nausea.14 Among serious AEs affecting 48% of patients, the most common were pyrexia, pneumonia, and sepsis.14 Gastrointestinal AEs werereported in 80% of patients, hyponatremia in 61%, and central neurologic events (which included dizziness and altered mental status) in 25%.16 Trial investigators concluded that selinexor improved survival considerably and that it presented a nonchemotherapy oral option for patients with R/R DLBCL.14

Tafasitamab-cxix is a CD19-targeting monoclonal antibody that gained FDA approval in 2020 for use with lenalidomide in adults with R/R DLBCL who are ineligible for ASCT, including patients with low-grade lymphoma derived DLBCL.17 Tafasitamab-cxix binds to the pre-B and mature B-lymphocyte surface antigen CD19, which is expressed in DLBCL and other B-cell malignancies.17 Tafasitamab-cxix, once bound to CD19, facilitates B-lymphocyte lysis via apoptosis and immune effector mechanisms that encompass antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis.17

The FDA approval of tafasitamab-cxix was based on data from the phase 2, single-arm, multicenter, open-label L-MIND trial (NCT02399085).17,18 The L-MIND trial included patients 18 years or older with R/R DLBCL who had received 1 to 3 previous therapies ( 1 of which incorporated a CD20-directed regimen), had an ECOG score of 0 to 2, and were ASCT ineligible.18 Patients were administered tafasitamab-cxix and lenalidomide in 28-day cycles and continued to receive tafasitamab-cxix every 2 weeks after cycle 12 until disease progression.18 Objective response rate (ie, PR and CR) was the primary end point per IRC, which implemented PET imaging; secondary end points included investigator-assessed objective response rate, DOR, OS, PFS, biomarker analyses, and safety.18 Eighty patients were included in the full analysis set (FAS), receiving tafasitamab-cxix plus lenalidomide.18 Of the FAS, the objective response rate was 60.0% (95% CI, 48.4%-70.8%) and the CR rate was 42.5% (34/80).18 The rate of patients achieving a 12-month DOR rate was comparable across subgroups, with 70.5% of patients who received 1 prior line of therapy achieving a 12-month DOR (95% CI, 47.2%-85.0%) and 72.7% of patients who had 2 or more prior lines of therapy achieving a 12-month DOR (95% CI, 46.3%-87.6%).18

Outcomes in patients with GCB DLBCL (n = 37) were promising, with an objective response rate of 48.6%, a 12-month DOR rate of 53.5%, and a 12-month OS rate of 65.4% (based upon the Hans algorithm). Outcomes in patients with non-GCB DLBCL (n = 21) were an improvement over those with the GCB subtype, with an objective response rate of 71.4%, a 12-month DOR rate of 83.1%, and a 12-month OS rate of 84.2%.18 IRC-evaluated data from a 2-year follow up of the L-MIND trial showed an objective response rate of 58.8% (47/80) and CR rate of 41.3% (33/80).19 The 2-year follow up data also showed a median DOR of 34.6 months, with a 31.6-month median OS and a 16.2-month median PFS.19

Safety data from the preliminary L-MIND trial results showed that the most frequent TEAEs (of any grade) were neutropenia (48%), thrombocytopenia (32%), anemia (31%), diarrhea (30%), pyrexia (22%), and asthenia (20%).20 A lenalidomide dose reduction was required in 42% of patients; 72% of patients could remain on daily lenalidomide at 20 mg or higher.20 Trial investigators concluded that the combination of tafasitamab-cxix and lenalidomide was well tolerated and did not lead to compounded AEs.20

The promising data from recent trialsparticularly from their DLBCL subtype based subgroupsunderscore the importance of understanding the unique prognoses and responses that these subtypes confer on patient outcomes. The establishment of DLBCL subtypes as prognostic and therapeutic response factors has fueled a search for more specific molecular targets in the disease process. In addition, the importance of subtype characterization is evidenced by ongoing diagnostic assay development (for use in conjunction with immunohistochemistry). As exemplified by the patient populations in these trials, new therapeutic options with distinct mechanisms of actions are needed for patients with R/R DLBCL who are ineligible for ASCT. Multiple studies of targeted agents in the R/R DLBCL setting are under way that include CAR T-cell, bispecific T-cell engager, programmed death receptor 1 (PD-1) inhibitor, and BCL2 inhibitor therapies.1 Continued development of clinically applicable diagnostics holds promise for improved prognostic capability and assessment of therapeutic response. With improved diagnostics, further elucidation of DLBCL-driver mutations can continue to provide additional DLBCL subtype-specific options and, hence, more treatments tailored to individual patients.

References1. Liu Y, Barta SK. Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment. Am J Hematol. 2019;94(5):604-616. doi:10.1002/ajh.254602. Diffuse large B-cell lymphoma. Lymphoma Research Foundation. Accessed October 12, 2020. https://lymphoma.org/aboutlymphoma/nhl/dlbcl/3. Cancer stat facts: NHL diffuse large B-cell lymphoma (DLBCL). National Cancer Institute. Accessed October 12, 2020. https://seer.cancer.gov/statfacts/html/dlbcl.html4. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large B-cell lymphoma. N Engl J Med. 2002;346(4):235-242. doi:10.1056/NEJMoa0117955. Rituxan plus CHOP approved for diffuse large B-cell lymphoma. Cancer Network. February 28, 2006. Accessed November 6, 2020. https://www.cancernetwork.com/view/rituxan-plus-chop-approved-diffuse-large-b-cell-lymphoma6. Cheson BD, Pfistner B, Juweid ME, et al; International Harmonization Project on Lymphoma. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579-586. doi:10.1200/JCO.2006.09.24037. Elstrom RL, Martin P, Ostrow K, et al. Response to second-line therapy defines the potential for cure in patients with recurrent diffuse large B-cell lymphoma: implications for the development of novel therapeutic strategies. Clin Lymphoma Myeloma Leuk. 2010;10(3):192-196. doi:10.3816/CLML.2010.n.0308. Oki Y, Kelly KR, Flinn I, et al. CUDC-907 in relapsed/refractory diffuse large B-cell lymphoma, including patients with MYC-alterations: results from an expanded phase I trial. Haematologica. 2017;102(11):1923-1930. doi:10.3324/haematol.2017.1728829. Ansell S, Gutierrez ME, Shipp MA, et al. A phase 1 study of nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039). Blood.2016; 128(22):183. doi:10.1182/blood.V128.22.183.18310. Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34(23):2698-2704. doi:10.1200/JCO.2015.65.978911. POLIVY. Prescribing information. Genentech, Inc; 2020. Accessed October 22, 2020. https://www.gene.com/download/pdf/polivy_prescribing.pdf12. Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2020;38(2):155-165. doi:10.1200/JCO.19.0017213. XPOVIO. Prescribing information. Karyopharm Therapeutics, Inc; 2020. Accessed October 22, 2020. https://www.karyopharm.com/wp-content/uploads/2019/07/NDA-212306-SN-0071-Prescribing-Information-01July2019.pdf14. Kalakonda N, Maerevoet M, Cavallo F, et al. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): a single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol. 2020;7(7):e511-e522. doi:10.1016/S2352-3026(20)30120-415. Karyopharm reports updated data from the phase 2b SADAL study at the 2019 International Conference on Malignant Lymphoma. News release. Karyopharm. June 19, 2019.Accessed June 28, 2020. https://www.globenewswire.com/news-release/2019/ 06/19/1871363/0/en/Karyopharm-Reports-Updated-Data-from-the-Phase-2b-SADAL-Study-at-the-2019-International-Conference-on-Malignant-Lymphoma.html16. FDA approves selinexor for relapsed/refractory diffuse large B-cell lymphoma. News release. FDA. June 22, 2020. Accessed June 28, 2020. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-selinexor-relapsedrefractory-diffuse-large-b-cell-lymphoma17. Monjuvi. Prescribing information. MorphoSys US Inc; 2020. Accessed October 22, 2020. https://www.monjuvi.com/pi/monjuvi-pi.pdf18. Duell J, Maddocks KJ, Gonzalez-Barca E, et al. Subgroup analyses from L-Mind, a phase II study of tafasitamab (MOR208) combined with lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma. Blood. 2019;134(suppl 1):1582. doi:10.1182/blood-2019-12257319. MorphoSys and Incyte announce long-term follow-up results from L-MIND study of tafasitamab in patients with r/r DLBCL. News release. Morpho-Sys. May 14, 2020. Accessed June 26, 2020. https://www.morphosys.com/media-investors/media-center/morphosys-and-incyte-announce-long-term-follow-up-results-from-l-mind20. Salles GA, Duell J, Gonzlez-Barca E, et al. Single-arm phase II study of MOR208 combined with lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma: L-Mind. Blood. 2018;132(suppl 1):227. doi:10.1182/blood-2018-99-113399

Original post:
New Approaches to the Treatment of Relapsed or Refractory Diffuse Large B-cell Lymphoma - Targeted Oncology

25 years on, what is the legacy of Dolly the Sheep, and what future for GM food? – Yorkshire Post

HomeIn the last in a series on milestone anniversaries in politics and cultural history, produced with Huddersfield University, we recall the controversy generated by the first genetically modified food in Britain.

Saturday, 2nd January 2021, 6:00 am

It was only a tin of tomato puree, but it created a stink that lingered for years.

The 25th anniversary of the first genetically modified food to go on sale in a British supermarket merits scarcely a footnote in retailing history, yet it heralded a new scientific era. That same year, Dolly the sheep, the first mammal to have been successfully cloned from an adult cell, made her debut at Edinburgh University.

The cans of concentrated California puree that went on sale at Sainsburys and Safeway in February 1996 had been produced from the flavr savr tomato , a strain from which the rotting gene, not to mention most of the vowels, had been removed. The bioscience company Zeneca had spent 10 years perfecting the process, and said the result was a stronger tasting sauce that stuck better to pasta.

Critics, however, called it Frankenstein food and some threatened a boycott. The Prince of Wales said the implications of genetically modified cops were enough to send a cold chill down the spine.

The tins stayed on the shelves for three years before demand subsided and the range was withdrawn. Today, Britain remains one of the few developed nations where such crops are not grown commercially, although modified oilseed rape, soybean, cotton-seed oil, maize and sugar beet are allowed to be imported.

But it is politics, not science that is holding back the tide, according to one Yorkshire expert.

As a scientist, and taking into account the laws and safety procedures that are in place, I dont see a problem, said Dr Dougie Clarke of Huddersfield Universitys School of Applied Sciences.

They create higher yields, there is less food waste and in third world countries where growing food in arid conditions is a problem, they now have drought-resistant crops that they can grow and sustain.

The issue, he said, was that while politicians were content to be led by science in their response to illness and disease, they were less willing to listen to the arguments for genetic modification.

The British government is more worried about the publics opinion than they really should be, he said. I understand that people are concerned that these modified crops might begin to wipe out the natural variety, but there are very good control measures in place to prevent that happening.

The campaign group Genewatch UK takes the opposite view, calling for protection for plants and animals from contamination by genetically modified organisms, and a ban on activities that would compromise human rights and food security.

The argument goes far beyond crops, and as Dr Clarke pointed out, the work carried out in Edinburgh 25 years ago had been the catalyst for many important medical developments.

In 1996 we were leading the world with Dolly the sheep, and the one good thing that the British government allowed was research in stem cells, which can replace damaged tissues, whereas America banned it at one stage.

Dollys arrival on July 5 1996 was for a while one of the worlds best kept secrets. It was not until the following February that news of her birth was made known.

Scientists produced her by inserting DNA from a single sheep cell into an egg and implanting it in a surrogate mother.

In America, President Bill Clinton set up a task force to examine the legal and ethical implications of cloning, but 25 years later the process has manifested itself in unexpected ways.

Quite apart from the medical research it engendered into Parkinsons Disease and other conditions, it spawned an industry in pet cloning for the benefit of people who cannot bear to say goodbye to a loved animal.

Many people will pay to get a copy of their pet. Companies in America and South Korea have been specialising in this since 2001, said Dr Clarke. The first dog to be cloned was an Afghan hound.

But the same technology is also being used for something of real use, in the cloning of sniffer dogs that are used to search out explosives or drugs. Only a very small number usually make the grade, but Korean scientists managed to clone a golden Labrador retriever that was renowned for its sniffing abilities, and made several clones of it.

Not everyone likes the idea of that, but its clear that good can come from cloning.

Human closing, however, would likely remain beyond the pale, he said. In theory its completely possible, but no-one has done it and most people would consider it totally unethical.

Opinion was divided when Dolly the cloned sheep apparently named after the singer Dolly Parton was revealed to the world. Critics feared that the technique could be used to artificially produce humans, a prospect described by Dr Ian Wilmut, who led the team of scientists behind the project, as repugnant as well as illegal.

But he said the work would enable us to study genetic diseases for which there is presently no cure.

Many animal rights activists were horrified at the development, and the Church of Scotland said that while the work was fascinating, it had reservations about the implications.

Support The Yorkshire Post and become a subscriber today. Your subscription will help us to continue to bring quality news to the people of Yorkshire. In return, youll see fewer ads on site, get free access to our app and receive exclusive members-only offers. Click here to subscribe.

Read more:
25 years on, what is the legacy of Dolly the Sheep, and what future for GM food? - Yorkshire Post

Canine Stem Cell Therapy Market to Eyewitness Massive Growth by 2027: VETSTEM BIOPHARMA, Cell Therapy Sciences, Regeneus, Aratana Therapeutics -…

The size of the global Canine Stem Cell Therapy market is expected to grow in the forecast period from 2020 to 2027, with a CAGR of XX. x% over the forecast period from 2020 to 2027 and is expected to reach XXX. X million by 2027, starting at XXX. X million in 2019.

A new informative report on the global Canine Stem Cell Therapy market titled as, Canine Stem Cell Therapy has recently published by Global Market Vision to its humongous database which helps to shape the future of the businesses by making well-informed business decisions. It offers a comprehensive analysis of various business aspects such as global market trends, recent technological advancements, market shares, size, and new innovations. Furthermore, this analytical data has been compiled through data exploratory techniques such as primary and secondary research. Moreover, an expert team of researchers throws light on various static as well as dynamic aspects of the global Canine Stem Cell Therapy market.

For Sample Copy of this Reports: https://www.globalmarketvision.com/sample_request/23873

The report presents a thorough overview of the competitive landscape of the global Canine Stem Cell Therapy Market and the detailed business profiles of the markets notable players. Threats and weaknesses of leading companies are measured by the analysts in the report by using industry-standard tools such as Porters five force analysis and SWOT analysis. The Canine Stem Cell Therapy Market report covers all key parameters such as product innovation, market strategy for leading companies, Canine Stem Cell Therapy market share, revenue generation, the latest research and development and market expert perspectives.

Some of the key players profiled in the Canine Stem Cell Therapy market include: VETSTEM BIOPHARMA

Cell Therapy Sciences

Regeneus

Aratana Therapeutics

Medivet Biologics

Okyanos

Vetbiologics

VetMatrix

Magellan Stem Cells

ANIMAL CELL THERAPIES

Stemcellvet

The main players in the Canine Stem Cell Therapy market are studies, and their strategies are analyzed to arrive at competitive prospects, current growth strategies and potential for expansion. In addition, the competitive landscape is due to the presence of market suppliers, numerous sales channels and revenue options. Contributions from industry experts as well as market leaders are an important factor in this study. Parents market trends, micro and macroeconomic factors, government stipulations and consumer dynamics are also studied in the writing of this report.Global Canine Stem Cell Therapy Market Segmentation:

Product Type Coverage (Market Size & Forecast, Major Company of Product Type etc.):Allogeneic Stem Cells

Autologous Stem cells

Application Coverage (Market Size & Forecast, Consumer Distribution):Veterinary Hospitals

Veterinary Clinics

Veterinary Research Institutes

Regions Covered in the Global Canine Stem Cell Therapy Market:

The Middle East and Africa

North America

South America

Europe

Asia-Pacific

Get Special Discount: https://www.globalmarketvision.com/check-discount/23873

Scope of the report: This report describes the global Canine Stem Cell Therapy market, in particular in North America, South America, Africa, Europe and Asia-Pacific, and the Middle East. This report segments the market based on producers, regions, type and use. In the next time, Canine Stem Cell Therapy will have good demand, although the value may fluctuate due to the rapid transformation in the availability of raw materials and other resources.

Regionally, this market has been inspected across various regions such as North America, Latin America, Middle East, Asia-Pacific, Africa, and Europe on the basis of productivity and manufacturing base. Some significant key players have been profiled in this research report to get an overview and strategies carried out by them. Degree of competition has been given by analyzing the global Canine Stem Cell Therapy market at domestic as well as a global platform. This global Canine Stem Cell Therapy market has been examined through industry analysis techniques such as SWOT and Porters five techniques.

Table of Content

1 Overview of the Canine Stem Cell Therapy market

2 Market competition by manufacturers

3 Production capacity by region 3 Production capacity by region

4 World consumption of Canine Stem Cell Therapy by region

5 Production, Turnover, Price trend by Type

6 Global Canine Stem Cell Therapy Market Analysis by Application

7 Company Profiles and Key Figures in Canine Stem Cell Therapy Business

8 Canine Stem Cell Therapy Manufacturing Cost Analysis

9 Marketing Channel, Distributors and Customers

10 Market Dynamics

11 Production and Supply Forecast

12 Consumption and demand forecasts

13 Forecast by type and by application (2021-2026)

14 Research and conclusion

15 Methodology and data source

Continuous

Place a Direct Order Of this Report: https://www.globalmarketvision.com/checkout/?currency=USD&type=single_user_license&report_id=23873

For Any special requirements about this report, please let us know and we can provide custom reports.

Note In order to provide a more accurate market forecast, all our reports will be updated before delivery by considering the impact of COVID-19.

Excerpt from:
Canine Stem Cell Therapy Market to Eyewitness Massive Growth by 2027: VETSTEM BIOPHARMA, Cell Therapy Sciences, Regeneus, Aratana Therapeutics -...

Back to Top