header image

Stem cell-based therapy for human diseases | Signal Transduction and Targeted Therapy – Nature.com

Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480489 (2011).

PubMed PubMed Central Article CAS Google Scholar

Ancans, J. Cell therapy medicinal product regulatory framework in Europe and its application for MSC-based therapy development. Front. Immunol. 3, 253 (2012).

PubMed PubMed Central Article Google Scholar

Yin, J. Q., Zhu, J. & Ankrum, J. A. Manufacturing of primed mesenchymal stromal cells for therapy. Nat. Biomed. Eng. 3, 90104 (2019).

PubMed Article CAS Google Scholar

OBrien, T. & Barry, F. P. Stem cell therapy and regenerative medicine. Mayo Clin. Proc. 84, 859861 (2009).

PubMed PubMed Central Article Google Scholar

Mousaei Ghasroldasht, M., Seok, J., Park, H. S., Liakath Ali, F. B. & Al-Hendy, A. Stem cell therapy: from idea to clinical practice. Int. J. Mol. Sci. 23, 2850 (2022).

Kuriyan, A. E. et al. Vision loss after intravitreal injection of autologous stem cells for AMD. N. Engl. J. Med. 376, 10471053 (2017).

PubMed PubMed Central Article Google Scholar

Biehl, J. K. & Russell, B. Introduction to stem cell therapy. J. Cardiovasc. Nurs. 24, 98103 (2009). quiz 104-105.

PubMed PubMed Central Article Google Scholar

Srijaya, T. C., Ramasamy, T. S. & Kasim, N. H. Advancing stem cell therapy from bench to bedside: lessons from drug therapies. J. Transl. Med. 12, 243 (2014).

PubMed PubMed Central Article Google Scholar

Ramalho-Santos, M. & Willenbring, H. On the origin of the term stem cell. Cell Stem Cell 1, 3538 (2007).

PubMed Article CAS Google Scholar

Konstantinov, I. E. In search of Alexander A. Maximow: the man behind the unitarian theory of hematopoiesis. Perspect. Biol. Med. 43, 269276 (2000).

PubMed Article CAS Google Scholar

Droscher, A. Images of cell trees, cell lines, and cell fates: the legacy of Ernst Haeckel and August Weismann in stem cell research. Hist. Philos. Life Sci. 36, 157186 (2014).

PubMed Article Google Scholar

Jansen, J. The first successful allogeneic bone-marrow transplant: Georges Mathe. Transfus. Med. Rev. 19, 246248 (2005).

PubMed Article Google Scholar

Blume, K. G. & Weissman, I. L. E. Donnall Thomas (1920-2012). Proc. Natl Acad. Sci. USA 109, 2077720778 (2012).

PubMed PubMed Central Article CAS Google Scholar

Cheng, M. Hartmann Stahelin (1925-2011) and the contested history of cyclosporin A. Clin. Transpl. 27, 326329 (2013).

Article CAS Google Scholar

Thomas, E. D. et al. Aplastic anaemia treated by marrow transplantation. Lancet 1, 284289 (1972).

PubMed Article CAS Google Scholar

Friedenstein, A. J., Chailakhyan, R. K. & Gerasimov, U. V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 20, 263272 (1987).

PubMed CAS Google Scholar

Friedenstein, A. J., Chailakhjan, R. K. & Lalykina, K. S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3, 393403 (1970).

PubMed CAS Google Scholar

Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9, 641650 (1991).

PubMed Article CAS Google Scholar

Bolli, R., Tang, X. L., Guo, Y. & Li, Q. After the storm: an objective appraisal of the efficacy of c-kit+ cardiac progenitor cells in preclinical models of heart disease. Can. J. Physiol. Pharm. 99, 129139 (2021).

Article CAS Google Scholar

Liu, C., Han, D., Liang, P., Li, Y. & Cao, F. The current dilemma and breakthrough of stem cell therapy in ischemic heart disease. Front. Cell Dev. Biol. 9, 636136 (2021).

PubMed PubMed Central Article Google Scholar

Zhang, J. et al. Basic and translational research in cardiac repair and regeneration: JACC state-of-the-art review. J. Am. Coll. Cardiol. 78, 20922105 (2021).

PubMed PubMed Central Article CAS Google Scholar

Gyongyosi, M., Wojakowski, W., Navarese, E. P., Moye, L. A. & Investigators, A. Meta-analyses of human cell-based cardiac regeneration therapies: controversies in meta-analyses results on cardiac cell-based regenerative studies. Circ. Res. 118, 12541263 (2016).

PubMed PubMed Central Article CAS Google Scholar

Okamoto, R., Matsumoto, T. & Watanabe, M. Regeneration of the intestinal epithelia: regulation of bone marrow-derived epithelial cell differentiation towards secretory lineage cells. Hum. Cell 19, 7175 (2006).

PubMed Article Google Scholar

Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 1934 (2019).

PubMed Article Google Scholar

Santos, A. J. M., Lo, Y. H., Mah, A. T. & Kuo, C. J. The intestinal stem cell niche: homeostasis and adaptations. Trends Cell Biol. 28, 10621078 (2018).

PubMed PubMed Central Article CAS Google Scholar

Roda, G. et al. Crohns disease. Nat. Rev. Dis. Prim. 6, 22 (2020).

PubMed Article Google Scholar

Kobayashi, T. et al. Ulcerative colitis. Nat. Rev. Dis. Prim. 6, 74 (2020).

PubMed Article Google Scholar

Gratwohl, A. et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transpl. 35, 869879 (2005).

Article CAS Google Scholar

Kashyap, A. & Forman, S. J. Autologous bone marrow transplantation for non-Hodgkins lymphoma resulting in long-term remission of coincidental Crohns disease. Br. J. Haematol. 103, 651652 (1998).

PubMed Article CAS Google Scholar

Hurley, J. M., Lee, S. G., Andrews, R. E. Jr., Klowden, M. J. & Bulla, L. A. Jr. Separation of the cytolytic and mosquitocidal proteins of Bacillus thuringiensis subsp. israelensis. Biochem Biophys. Res. Commun. 126, 961965 (1985).

PubMed Article CAS Google Scholar

Oyama, Y. et al. Autologous hematopoietic stem cell transplantation in patients with refractory Crohns disease. Gastroenterology 128, 552563 (2005).

PubMed Article Google Scholar

Burt, R. K. et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in patients with severe anti-TNF refractory Crohn disease: long-term follow-up. Blood 116, 61236132 (2010).

PubMed Article CAS Google Scholar

Hasselblatt, P. et al. Remission of refractory Crohns disease by high-dose cyclophosphamide and autologous peripheral blood stem cell transplantation. Aliment Pharm. Ther. 36, 725735 (2012).

Article CAS Google Scholar

Hawkey, C. J. et al. Autologous hematopoetic stem cell transplantation for refractory Crohn disease: a randomized clinical trial. J. Am. Med. Assoc. 314, 25242534 (2015).

Article CAS Google Scholar

Lindsay, J. O. et al. Autologous stem-cell transplantation in treatment-refractory Crohns disease: an analysis of pooled data from the ASTIC trial. Lancet Gastroenterol. Hepatol. 2, 399406 (2017).

PubMed Article Google Scholar

Wang, R. et al. Stem cell therapy for Crohns disease: systematic review and meta-analysis of preclinical and clinical studies. Stem Cell Res Ther. 12, 463 (2021).

PubMed PubMed Central Article CAS Google Scholar

Hawkey, C. J. Hematopoietic stem cell transplantation in Crohns disease: state-of-the-art treatment. Dig. Dis. 35, 107114 (2017).

PubMed Article CAS Google Scholar

Si-Tayeb, K., Lemaigre, F. P. & Duncan, S. A. Organogenesis and development of the liver. Dev. Cell 18, 175189 (2010).

PubMed Article CAS Google Scholar

Xue, R. et al. Clinical performance of stem cell therapy in patients with acute-on-chronic liver failure: a systematic review and meta-analysis. J. Transl. Med. 16, 126 (2018).

PubMed PubMed Central Article CAS Google Scholar

Shi, M. et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl. Med. 1, 725731 (2012).

PubMed PubMed Central Article CAS Google Scholar

Liu, Y., Dong, Y., Wu, X., Xu, X. & Niu, J. The assessment of mesenchymal stem cells therapy in acute on chronic liver failure and chronic liver disease: a systematic review and meta-analysis of randomized controlled clinical trials. Stem Cell Res. Ther. 13, 204 (2022).

PubMed PubMed Central Article Google Scholar

Lin, B. L. et al. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: a randomized controlled trial. Hepatology 66, 209219 (2017).

PubMed Article CAS Google Scholar

Gordon, M. Y. et al. Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor. Stem Cells 24, 18221830 (2006).

PubMed Article Google Scholar

Arroyo, V. et al. Acute-on-chronic liver failure in cirrhosis. Nat. Rev. Dis. Prim. 2, 16041 (2016).

PubMed Article Google Scholar

Zhang, Z. et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J. Gastroenterol. Hepatol. 27(Suppl 2), 112120 (2012).

PubMed Article CAS Google Scholar

El-Ansary, M. et al. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev. Rep. 8, 972981 (2012).

PubMed Article CAS Google Scholar

Xu, L. et al. Randomized trial of autologous bone marrow mesenchymal stem cells transplantation for hepatitis B virus cirrhosis: regulation of Treg/Th17 cells. J. Gastroenterol. Hepatol. 29, 16201628 (2014).

PubMed Article CAS Google Scholar

Suk, K. T. et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology 64, 21852197 (2016).

PubMed Article CAS Google Scholar

Fang, X. et al. A study about immunomodulatory effect and efficacy and prognosis of human umbilical cord mesenchymal stem cells in patients with chronic hepatitis B-induced decompensated liver cirrhosis. J. Gastroenterol. Hepatol. 33, 774780 (2018).

PubMed Article CAS Google Scholar

Mohamadnejad, M. et al. Randomized placebo-controlled trial of mesenchymal stem cell transplantation in decompensated cirrhosis. Liver Int. 33, 14901496 (2013).

PubMed Article CAS Google Scholar

Nguyen, T. L. et al. Autologous bone marrow mononuclear cell infusion for liver cirrhosis after the Kasai operation in children with biliary atresia. Stem Cell Res. Ther. 13, 108 (2022).

Visit link:
Stem cell-based therapy for human diseases | Signal Transduction and Targeted Therapy - Nature.com

Comments are closed.

Back to Top