Lenrt, S. et al. Trop2: Jack of all trades, master of none. Cancers 12, 3328 (2020).
PubMed Central Google Scholar
Remk, J. et al. Trop-2 plasticity is controlled by epithelial-to-mesenchymal transition. Carcinogenesis 39, 14111418 (2018).
PubMed Google Scholar
Linnenbach, A. J. et al. Sequence investigation of the major gastrointestinal tumor-associated antigen gene family, GA733. Proc. Natl. Acad. Sci. U.S.A. 86, 2731 (1989).
ADS CAS PubMed PubMed Central Google Scholar
Linnenbach, A. J. et al. Retroposition in a family of carcinoma-associated antigen genes. Mol. Cell. Biol. 13, 15071515 (1993).
CAS PubMed PubMed Central Google Scholar
El Sewedy, T., Fornaro, M. & Alberti, S. Cloning of the murine TROP2 gene: Conservation of a PIP2-binding sequence in the cytoplasmic domain of TROP-2. Int. J. Cancer 75, 324330 (1998).
PubMed Google Scholar
Lipinski, M., Parks, D. R., Rouse, R. V. & Herzenberg, L. A. Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc. Natl. Acad. Sci. U.S.A. 78, 51475150 (1981).
ADS CAS PubMed PubMed Central Google Scholar
Stepan, L. P. et al. Expression of Trop2 cell surface glycoprotein in normal and tumor tissues. J. Histochem. Cytochem. 59, 701710 (2011).
CAS PubMed PubMed Central Google Scholar
Trerotola, M. et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene 32, 222233 (2013).
CAS PubMed Google Scholar
Sozo, F., Wallace, M. J., Zahra, V. A., Filby, C. E. & Hooper, S. B. Gene expression profiling during increased fetal lung expansion identifies genes likely to regulate development of the distal airways. Physiol. Genomics 24, 105113 (2006).
CAS PubMed Google Scholar
McDougall, A. R. A. et al. The oncogene Trop2 regulates fetal lung cell proliferation. Am. J. Physiol. Lung Cell. Mol. Physiol. 301, 478489 (2011).
Google Scholar
Mustata, R. C. et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 5, 421432 (2013).
CAS PubMed Google Scholar
Fernandez Vallone, V. et al. Trop2 marks transient gastric fetal epithelium and adult regenerating cells after epithelial damage. Dev. Camb. Engl. 143, 14521463 (2016).
Google Scholar
Sun, W., Wilhelmina Aalders, T. & Oosterwijk, E. Identification of potential bladder progenitor cells in the trigone. Dev. Biol. 393, 8492 (2014).
CAS PubMed Google Scholar
Tsukahara, Y., Tanaka, M. & Miyajima, A. TROP2 expressed in the trunk of the ureteric duct regulates branching morphogenesis during kidney development. PLoS ONE 6, e28607 (2011).
ADS CAS PubMed PubMed Central Google Scholar
McDougall, A. R. A. et al. Intrauterine growth restriction alters the postnatal development of the rat cerebellum. Dev. Neurosci. 39, 215227 (2017).
CAS PubMed Google Scholar
Tsujikawa, M. et al. Identification of the gene responsible for gelatinous drop-like corneal dystrophy. Nat. Genet. 21, 420423 (1999).
CAS PubMed Google Scholar
Takaoka, M., Nakamura, T., Ban, Y. & Kinoshita, S. Phenotypic investigation of cell junction-related proteins in gelatinous drop-like corneal dystrophy. Investig. Ophthalmol. Vis. Sci. 48, 10951101 (2007).
Google Scholar
Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199204 (2019).
CAS PubMed PubMed Central Google Scholar
Goldstein, A. S. et al. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc. Natl. Acad. Sci. U.S.A. 105, 2088220887 (2008).
ADS CAS PubMed PubMed Central Google Scholar
Okabe, M. et al. Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development 136, 19511960 (2009).
CAS PubMed Google Scholar
Yang, J. et al. Trop2 regulates the proliferation and differentiation of murine compact-bone derived MSCs. Int. J. Oncol. 43, 859867 (2013).
CAS PubMed Google Scholar
Memarzadeh, S. et al. Cell-autonomous activation of the PI3-kinase pathway initiates endometrial cancer from adult uterine epithelium. Proc. Natl. Acad. Sci. U.S.A. 107, 1729817303 (2010).
ADS CAS PubMed PubMed Central Google Scholar
Li, T. et al. Trop2 guarantees cardioprotective effects of cortical bone-derived stem cells on myocardial ischemia/reperfusion injury. Cell Transplant. 27, 12561268 (2018).
PubMed PubMed Central Google Scholar
Wang, J. et al. Loss of Trop2 promotes carcinogenesis and features of epithelial to mesenchymal transition in squamous cell carcinoma. Mol. Cancer Res. 9, 16861695 (2011).
CAS PubMed PubMed Central Google Scholar
Dreyfuss, D. & Ricard, J.-D. Acute lung injury and bacterial infection. Clin. Chest Med. 26, 105112 (2005).
PubMed Google Scholar
GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 19802017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Lond. Engl. 392, 17361788 (2018).
Google Scholar
Osuka, A., Ogura, H., Ueyama, M., Shimazu, T. & Lederer, J. A. Immune response to traumatic injury: Harmony and discordance of immune system homeostasis. Acute Med. Surg. 1, 6369 (2014).
PubMed PubMed Central Google Scholar
Stoecklein, V. M., Osuka, A. & Lederer, J. A. Trauma equals dangerdamage control by the immune system. J. Leukoc. Biol. 92, 539551 (2012).
CAS PubMed PubMed Central Google Scholar
Huber-Lang, M., Lambris, J. D. & Ward, P. A. Innate immune responses to trauma. Nat. Immunol. 19, 327341 (2018).
CAS PubMed PubMed Central Google Scholar
Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 11531163 (2019).
CAS PubMed Google Scholar
Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619625 (2020).
ADS CAS PubMed PubMed Central Google Scholar
Yu, Y. et al. A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nat. Commun. 5, 3230 (2014).
ADS PubMed Google Scholar
Angelidis, I. et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10, 963 (2019).
ADS PubMed PubMed Central Google Scholar
Kim, E. Y. et al. Persistent activation of an innate immune axis translates respiratory viral infection into chronic lung disease. Nat. Med. 14, 633640 (2008).
CAS PubMed PubMed Central Google Scholar
Liu, Q. et al. Increased expression of TROP2 in airway basal cells potentially contributes to airway remodeling in chronic obstructive pulmonary disease. Respir. Res. 17, 159 (2016).
PubMed PubMed Central Google Scholar
Major, J. et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science 369, 712717 (2020).
ADS CAS PubMed PubMed Central Google Scholar
Kamata, H. et al. Epithelial cell-derived secreted and transmembrane 1A signals to activated neutrophils during Pneumococcal pneumonia. Am. J. Respir. Cell Mol. Biol. 55, 407418 (2016).
CAS PubMed PubMed Central Google Scholar
Katsura, H. et al. Human lung stem cell-based alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell 27, 890-904.e8 (2020).
CAS PubMed PubMed Central Google Scholar
Gerlach, R. L., Camp, J. V., Chu, Y.-K. & Jonsson, C. B. Early host responses of seasonal and pandemic influenza A viruses in primary well-differentiated human lung epithelial cells. PLoS ONE 8, e78912 (2013).
ADS PubMed PubMed Central Google Scholar
Shen, B. Q., Finkbeiner, W. E., Wine, J. J., Mrsny, R. J. & Widdicombe, J. H. Calu-3: A human airway epithelial cell line that shows cAMP-dependent Cl-secretion. Am. J. Physiol. 266, L493-501 (1994).
CAS PubMed Google Scholar
Rezaee, F. & Georas, S. N. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am. J. Respir. Cell Mol. Biol. 50, 857869 (2014).
PubMed PubMed Central Google Scholar
Soong, G., Parker, D., Magargee, M. & Prince, A. S. The type III toxins of Pseudomonas aeruginosa disrupt epithelial barrier function. J. Bacteriol. 190, 28142821 (2008).
CAS PubMed Google Scholar
Short, K. R. et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J. 47, 954966 (2016).
CAS PubMed Google Scholar
Linfield, D. T., Raduka, A., Aghapour, M. & Rezaee, F. Airway tight junctions as targets of viral infections. Tissue Barriers 9, 1883965 (2021).
PubMed PubMed Central Google Scholar
Nakatsukasa, M. et al. Tumor-associated calcium signal transducer 2 is required for the proper subcellular localization of claudin 1 and 7: Implications in the pathogenesis of gelatinous drop-like corneal dystrophy. Am. J. Pathol. 177, 13441355 (2010).
CAS PubMed PubMed Central Google Scholar
Xu, P. et al. A new in vitro model of GDLD by knocking out TACSTD2 and its paralogous gene EpCAM in human corneal epithelial cells. Transl. Vis. Sci. Technol. 7, 30 (2018).
CAS PubMed PubMed Central Google Scholar
Nakato, G. et al. Amelioration of congenital tufting enteropathy in EpCAM (TROP1)-deficient mice via heterotopic expression of TROP2 in Intestinal EPITHELIAL cells. Cells 9, 1847 (2020).
CAS PubMed Central Google Scholar
Singh, R. et al. A new triglycyl peptide linker for antibody-drug conjugates (ADCs) with improved targeted killing of cancer cells. Mol. Cancer Ther. 15, 13111320 (2016).
CAS PubMed Google Scholar
Szala, S. et al. Molecular cloning of cDNA for the carcinoma-associated antigen GA733-2. Proc. Natl. Acad. Sci. 87, 35423546 (1990).
ADS CAS PubMed PubMed Central Google Scholar
Mashhadi, S. M. Y. et al. Shedding light on the EpCAM: An overview. J. Cell. Physiol. 234, 1256912580 (2019).
Google Scholar
Here is the original post:
TACSTD2 upregulation is an early reaction to lung infection | Scientific Reports - Nature.com